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Preface

Since the last edition of this book appeared, more than fve million scientifc papers 
have been published. Tere has been a parallel increase in the quantity of digital 
information: new data on genome sequences, protein interactions, molecular struc-
tures, and gene expression—all stored in vast databases. Te challenge, for both sci-
entists and textbook writers, is to convert this overwhelming amount of information 
into an accessible and up-to-date understanding of how cells work. 

Help comes from a large increase in the number of review articles that attempt 
to make raw material easier to digest, although the vast majority of these reviews 
are still quite narrowly focused. Meanwhile, a rapidly growing collection of online 
resources tries to convince us that understanding is only a few mouse-clicks away. 
In some areas this change in the way we access knowledge has been highly suc-
cessful—in discovering the latest information about our own medical problems, for 
example. But to understand something of the beauty and complexity of how living 
cells work, one needs more than just a wiki- this or wiki- that; it is enormously hard 
to identify the valuable and enduring gems from so much confusing landfll. Much 
more efective is a carefully wrought narrative that leads logically and progressively 
through the key ideas, components, and experiments in such a way that readers 
can build for themselves a memorable, conceptual framework for cell biology—
a framework that will allow them to critically evaluate all of the new science and, 
more importantly, to understand it. Tat is what we have tried to do in Molecular 
Biology of the Cell.

In preparing this new edition, we have inevitably had to make some difcult 
decisions. In order to incorporate exciting new discoveries, while at the same time 
keeping the book portable, much has had to be excised. We have added new sec-
tions, such as those on new RNA functions, advances in stem cell biology, new 
methods for studying proteins and genes and for imaging cells, advances in the 
genetics and treatment of cancer, and timing, growth control, and morphogenesis 
in development.

Te chemistry of cells is extremely complex, and any list of cell parts and their 
interactions—no matter how complete—will leave huge gaps in our understanding. 
We now realize that to produce convincing explanations of cell behavior will require 
quantitative information about cells that is coupled to sophisticated mathematical/
computational approaches—some not yet invented. As a consequence, an emerg-
ing goal for cell biologists is to shift their studies more toward quantitative descrip-
tion and mathematical deduction. We highlight this approach and some of its meth-
ods in a new section at the end of Chapter 8.

Faced with the immensity of what we have learned about cell biology, it might 
be tempting for a student to imagine that there is little left to discover. In fact, the 
more we fnd out about cells, the more new questions emerge. To emphasize that 
our understanding of cell biology is incomplete, we have highlighted some of the 
major gaps in our knowledge by including What We Don’t Know at the end of each 
chapter. Tese brief lists include only a tiny sample of the critical unanswered ques-
tions and challenges for the next generation of scientists. We derive great pleasure 
from the knowledge that some of our readers will provide future answers.

Te more than 1500 illustrations have been designed to create a parallel narra-
tive, closely interwoven with the text. We have increased their consistency between 
chapters, particularly in the use of color and of common icons; membrane pumps 
and channels are a good example. To avoid interruptions to the text, some material 
has been moved into new, readily accessible panels. Most of the important pro-
tein structures depicted have now been redrawn and consistently colored. In each  
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case, we now provide the corresponding Protein Data Bank (PDB) code for the 
protein, which can be used to access online tools that provide more information 
about it, such as those on the RCSB PDB website (www.rcsb.org). Tese connec-
tions allow readers of the book to explore more fully the proteins that lie at the core 
of cell biology. 

John Wilson and Tim Hunt have again contributed their distinctive and imagi-
native problems to help students gain a more active understanding of the text. 
Te problems emphasize quantitative approaches and encourage critical thinking 
about published experiments; they are now present at the end of all chapters. Te 
answers to these problems, plus more than 1800 additional problems and solutions, 
all appear in the companion volume that John and Tim have written, Molecular 
Biology of the Cell, Sixth Edition: Te Problems Book.

We live in a world that presents us with many complex issues related to cell 
biology: biodiversity, climate change, food security, environmental degradation, 
resource depletion, and human disease. We hope that our textbook will help the 
reader better understand and possibly contribute to meeting these challenges. 
Knowledge and understanding bring the power to intervene.

We are indebted to a large number of scientists whose generous help we men-
tion separately in the detailed acknowledgments. Here we must mention some par-
ticularly signifcant contributors. For Chapter 8, Hana El-Samad provided the core 
of the section on Mathematical Analysis of Cell Functions, and Karen Hopkin made 
valuable contributions to the section on Studying Gene Expression and Function.  
Werner Kuhlbrandt helped to reorganize and rewrite Chapter 14 (Energy Conver-
sion: Mitochondria and Chloroplasts). Rebecca Heald did the same for Chapter 16 
(Te Cytoskeleton), as did Alexander Schier for Chapter 21 (Development of Mul-
ticellular Organisms), and Matt Welch for Chapter 23 (Pathogens and Infection). 
Lewis Lanier aided in the writing of Chapter 24 (Te Innate and Adaptive Immune 
Systems). Hossein Amiri generated the enormous online instructor’s question bank.

Before starting out on the revision cycle for this edition, we asked a number of 
scientists who had used the last edition to teach cell biology students to meet with 
us and suggest improvements. Tey gave us useful feedback that has helped inform 
the new edition. We also benefted from the valuable input of groups of students 
who read most of the chapters in page proofs.

Many people and much efort are needed to convert a long manuscript and a 
large pile of sketches into a f nished textbook. T e team at Garland Science that 
managed this conversion was outstanding. Denise Schanck, directing operations, 
displayed forbearance, insight, tact, and energy throughout the journey; she guided 
us all unerringly, ably assisted by Allie Bochicchio and Janette Scobie. Nigel Orme 
oversaw our revamped illustration program, put all the artwork into its fnal form, 
and again enhanced the back cover with his graphics skills. Tiago Barros helped us 
refresh our presentation of protein structures. Matthew McClements designed the 
book and its front cover. Emma Jefcock again laid out the fnal pages, managing end-
less rounds of proofs and last-minute changes with remarkable skill and patience; 
Georgina Lucas provided her with help. Michael Morales, assisted by Leah Chris-
tians, produced and assembled the complex web of videos, animations, and other 
materials that form the core of the online resources that accompany the book. Adam 
Sendrof provided us with the valuable feedback from book users around the world 
that informed our revision cycle. Casting expert eyes over the manuscript, Eliza-
beth Zayatz and Sherry Granum Lewis acted as development editors, Jo Clayton as 
copyeditor, and Sally Huish as proofreader. Bill Johncocks compiled the index. In 
London, Emily Preece fed us, while the Garland team’s professional help, skills, and 
energy, together with their friendship, nourished us in every other way throughout 
the revision, making the whole process a pleasure. Te authors are extremely fortu-
nate to be supported so generously.

We thank our spouses, families, friends, and colleagues for their continuing sup-
port, which has once again made the writing of this book possible.

Just as we were completing this edition, Julian Lewis, our coauthor, friend, and 
colleague, fnally succumbed to the cancer that he had fought so heroically for ten 
years. Starting in 1979, Julian made major contributions to all six editions, and,  
as our most elegant wordsmith, he elevated and enhanced both the style and tone  
of all the many chapters he touched. Noted for his careful scholarly approach,  
clarity and simplicity were at the core of his writing. Julian is irreplaceable, and we 
will all deeply miss his friendship and collaboration. We dedicate this Sixth Edition 
to his memory.

PREFACE
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Note to the Reader

Structure of the Book
Although the chapters of this book can be read independently of one another, they 
are arranged in a logical sequence of fve parts. Te frst three chapters of Part I 
cover elementary principles and basic biochemistry. Tey can serve either as an 
introduction for those who have not studied biochemistry or as a refresher course 
for those who have. Part II deals with the storage, expression, and transmission 
of genetic information. Part III presents the principles of the main experimental 
methods for investigating and analyzing cells; here, a new section entitled “Math-
ematical Analysis of Cell Functions” in Chapter 8 provides an extra dimension in 
our understanding of cell regulation and function. Part IV describes the internal 
organization of the cell. Part V follows the behavior of cells in multicellular sys-
tems, starting with development of multicellular organisms and concluding with 
chapters on pathogens and infection and on the innate and adaptive immune 
systems.

End-of-Chapter Problems
A selection of problems, written by John Wilson and Tim Hunt, appears in the text 
at the end of each chapter. New to this edition are problems for the last four chap-
ters on multicellular organisms. Te complete solutions to all of these problems 
can be found in Molecular Biology of the Cell, Sixth Edition: Te Problems Book.

References
A concise list of selected references is included at the end of each chapter. Tese 
are arranged in alphabetical order under the main chapter section headings. 
Tese references sometimes include the original papers in which important dis-
coveries were frst reported. 

Glossary Terms
Troughout the book, boldface type has been used to highlight key terms at the 
point in a chapter where the main discussion occurs. Italic type is used to set of 
important terms with a lesser degree of emphasis. At the end of the book is an 
expanded glossary, covering technical terms that are part of the common cur-
rency of cell biology; it should be the frst resort for a reader who encounters an 
unfamiliar term. Te complete glossary as well as a set of fashcards is available 
on the Student Website.

Nomenclature for Genes and Proteins
Each species has its own conventions for naming genes; the only common fea-
ture is that they are always set in italics. In some species (such as humans), gene 
names are spelled out all in capital letters; in other species (such as zebrafsh), all 
in lowercase; in yet others (most mouse genes), with the frst letter in uppercase 
and rest in lowercase; or (as in Drosophila) with diferent combinations of upper-
case and lowercase, according to whether the frst mutant allele to be discovered 
produced a dominant or recessive phenotype. Conventions for naming protein 
products are equally varied.

Tis typographical chaos drives everyone crazy. It is not just tiresome and 
absurd; it is also unsustainable. We cannot independently defne a fresh conven-
tion for each of the next few million species whose genes we may wish to study. 
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Moreover, there are many occasions, especially in a book such as this, where we 
need to refer to a gene generically—without specifying the mouse version, the 
human version, the chick version, or the hippopotamus version—because they 
are all equivalent for the purposes of our discussion. What convention then 
should we use?

We have decided in this book to cast aside the diferent conventions that are 
used in individual species and follow a uniform rule: we write all gene names, like 
the names of people and places, with the frst letter in uppercase and the rest in 
lowercase, but all in italics, thus: Apc, Bazooka, Cdc2, Dishevelled, Egl1. Te cor-
responding protein, where it is named after the gene, will be written in the same 
way, but in roman rather than italic letters: Apc, Bazooka, Cdc2, Dishevelled, Egl1. 
When it is necessary to specify the organism, this can be done with a prefx to the 
gene name.

For completeness, we list a few further details of naming rules that we shall 
follow. In some instances, an added letter in the gene name is traditionally used 
to distinguish between genes that are related by function or evolution; for those 
genes, we put that letter in uppercase if it is usual to do so (LacZ, RecA, HoxA4). 
We use no hyphen to separate added letters or numbers from the rest of the name. 
Proteins are more of a problem. Many of them have names in their own right, 
assigned to them before the gene was named. Such protein names take many 
forms, although most of them traditionally begin with a lowercase letter (actin, 
hemoglobin, catalase), like the names of ordinary substances (cheese, nylon), 
unless they are acronyms (such as GFP, for Green Fluorescent Protein, or BMP4, 
for Bone Morphogenetic Protein #4). To force all such protein names into a uni-
form style would do too much violence to established usages, and we shall simply 
write them in the traditional way (actin, GFP, and so on). For the corresponding 
gene names in all these cases, we shall nevertheless follow our standard rule: 
Actin, Hemoglobin, Catalase, Bmp4, Gfp. Occasionally in our book we need to 
highlight a protein name by setting it in italics for emphasis; the intention will 
generally be clear from the context.

For those who wish to know them, the table below shows some of the ofcial 
conventions for individual species—conventions that we shall mostly violate in 
this book, in the manner shown.

Organism

Species-Specifc Convention Unifed Convention Used in This Book

Gene Protein Gene Protein

Mouse Hoxa4 Hoxa4 HoxA4 HoxA4

Bmp4 BMP4 Bmp4 BMP4

integrin α-1, Itgα1 integrin α1 Integrin α1, Itgα1 integrin α1

Human HOXA4 HOXA4 HoxA4 HoxA4

Zebrafish cyclops, cyc Cyclops, Cyc Cyclops, Cyc Cyclops, Cyc

Caenorhabditis unc-6 UNC-6 Unc6 Unc6

Drosophila sevenless, sev (named 
after recessive phenotype)

Sevenless, SEV Sevenless, Sev Sevenless, Sev

Deformed, Dfd (named 
after dominant mutant 
phenotype)

Deformed, DFD Deformed, Dfd Deformed, Dfd

Yeast

   Saccharomyces cerevisiae
   (budding yeast)

CDC28 Cdc28, Cdc28p Cdc28 Cdc28

   Schizosaccharomyces  
   pombe (fission yeast)

Cdc2 Cdc2, Cdc2p Cdc2 Cdc2

Arabidopsis GAI GAI Gai GAI

E. coli uvrA UvrA UvrA UvrA

NOTE TO THE READER
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Molecular Biology of the Cell, Sixth Edition: Te Problems Book
by John Wilson and Tim Hunt (ISBN: 978-0-8153-4453-7)
Te Problems Book is designed to help students appreciate the ways in which 
experiments and simple calculations can lead to an understanding of how cells 
work. It provides problems to accompany Chapters 1–20 of Molecular Biology 
of the Cell. Each chapter of problems is divided into sections that correspond to 
those of the main textbook and review key terms, test for understanding basic 
concepts, pose research-based problems, and now include MCAT-style questions 
which help students to prepare for standardized medical school admission tests. 
Molecular Biology of the Cell, Sixth Edition: Te Problems Book should be useful 
for homework assignments and as a basis for class discussion. It could even pro-
vide ideas for exam questions. Solutions for all of the problems are provided in the 
book. Solutions for the end-of-chapter problems for Chapters 1–24 in the main 
textbook are also found in Te Problems Book.

RESOURCES FOR INSTRUCTORS AND STUDENTS
Te teaching and learning resources for instructors and students are available 
online. Te instructor’s resources are password-protected and available only to 
adopting instructors. Te student resources are available to everyone. We hope 
these resources will enhance student learning and make it easier for instructors to 
prepare dynamic lectures and activities for the classroom.

Instructor Resources
Instructor Resources are available on the Garland Science Instructor’s Resource 
Site, located at www.garlandscience.com/instructors. Te website provides access 
not only to the teaching resources for this book but also to all other Garland Sci-
ence textbooks. Adopting instructors can obtain access to the site from their sales 
representative or by emailing science@garland.com.

Art of Molecular Biology of the Cell, Sixth Edition
Te images from the book are available in two convenient formats: PowerPoint® 
and JPEG. Tey have been optimized for display on a computer. Figures are 
searchable by fgure number, by fgure name, or by keywords used in the fgure 
legend from the book.

Figure-Integrated Lecture Outlines
Te section headings, concept headings, and fgures from the text have been inte-
grated into PowerPoint presentations. Tese will be useful for instructors who 
would like a head start creating lectures for their course. Like all of our PowerPoint 
presentations, the lecture outlines can be customized. For example, the content of 
these presentations can be combined with videos and questions from the book or 
Question Bank, in order to create unique lectures that facilitate interactive learn-
ing. 

Animations and Videos
Te 174 animations and videos that are available to students are also available on 
the Instructor’s Website in two formats. Te WMV-formatted movies are created 
for instructors who wish to use the movies in PowerPoint presentations on Win-
dows® computers; the QuickTime-formatted movies are for use in PowerPoint 
for Apple computers or Keynote® presentations. Te movies can easily be down-
loaded using the “download” button on the movie preview page. Te movies are 
correlated to each chapter and callouts are highlighted in color.

Media Guide
Tis document provides an overview to the multimedia available for students and 
instructors and contains the text of the voice-over narration for all of the movies. 

Question Bank 
Written by Hossein Amiri, University of California, Santa Cruz, this greatly 
expanded question bank includes a variety of question formats: multiple choice, 
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short answer, fll-in-the-blank, true-false, and matching. Tere are 35–60 ques-
tions per chapter, and a large number of the multiple-choice questions will be 
suitable for use with personal response systems (that is, clickers). Te Question 
Bank was created with the philosophy that a good exam should do much more 
than simply test students’ ability to memorize information; it should require them 
to refect upon and integrate information as a part of a sound understanding. Tis 
resource provides a comprehensive sampling of questions that can be used either 
directly or as inspiration for instructors to write their own test questions. 

Diploma® Test Generator Software
Te questions from the Question Bank have been loaded into the Diploma Test 
Generator software. Te software is easy to use and can scramble questions to cre-
ate multiple tests. Questions are organized by chapter and type and can be addi-
tionally categorized by the instructor according to difculty or subject. Existing 
questions can be edited and new ones added. Te Test Generator is compatible 
with several course management systems, including Blackboard®.

Medical Topics Guide
Tis document highlights medically relevant topics covered throughout Molecular 
Biology of the Cell and Te Problems Book. It will be particularly useful for instruc-
tors with a large number of premedical, health science, or nursing students. 

Blackboard and Learning Management System (LMS) Integration
Te movies, book images, and student assessments that accompany the book  
can be integrated into Blackboard or other LMSs. Tese resources are bundled 
into a “Common Cartridge” or “Upload Package” that facilitates bulk uploading  
of textbook resources into Blackboard and other LMSs. Te LMS Common  
Cartridge can be obtained on a DVD from your sales representative or by emailing 
science@garland.com.

Resources for Students
Te resources for students are available on the Molecular Biology of the Cell  
Student Website, located at www.garlandscience.com/MBOC6-students.

Animations and Videos
Tere are 174 movies, covering a wide range of cell biology topics, which review 
key concepts in the book and illuminate subcellular processes. Te movies are 
correlated to each chapter and callouts are highlighted in color. 

Cell Explorer Slides
Tis application teaches cell morphology through interactive micrographs that 
highlight important cellular structures.

Flashcards
Each chapter contains a set of fashcards, built into the website, that allow stu-
dents to review key terms from the text.

Glossary
Te complete glossary from the book is available on the website and can be 
searched and browsed.

NOTE TO THE READER
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