

Molecular Biology of THE ELL

Sixth Edition

ALBERTS

JOHNSON

LEWIS

MORGAN

RAFF

ROBERTS

WALTER

Molecular Biology of THE CELL Sixth Edition

Bruce Alberts
Alexander Johnson
Julian Lewis
David Morgan
Martin Raff
Keith Roberts
Peter Walter

With problems by

John Wilson

Tim Hunt

Garland Science

Vice President: Denise Schanck Associate Editor: Allie Bochicchio

Production Editor and Layout: EJ Publishing Services

Senior Production Editor: Georgina Lucas

Text Editors: Sherry Granum Lewis and Elizabeth Zayatz

Illustrator: Nigel Orme Structures: Tiago Barros

Designer: Matthew McClements, Blink Studio, Ltd.

Copyeditor: Jo Clayton Proofreader: Sally Huish Indexer: Bill Johncocks

Permissions Coordinator: Sheri Gilbert

Back Cover Photograph: Photography, Christophe Carlinet;

Design, Nigel Orme

Molecular Biology of the Cell Interactive Media: Artistic and Scientific Direction: Peter Walter

Narration: Julie Theriot

Director of Digital Publishing: Michael Morales

Editorial Assistant: Leah Christians Production Editor: Natasha Wolfe

© 2015 by Bruce Alberts, Alexander Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, and Peter Walter.

This book contains information obtained from authentic and highly regarded sources. Every effort has been made to trace copyright holders and to obtain their permission for the use of copyright material. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.

All rights reserved. No part of this book covered by the copyright herein may be reproduced or used in any format in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems—without permission of the publisher.

About the Authors

Bruce Alberts received his PhD from Harvard University and is the Chancellor's Leadership Chair in Biochemistry and Biophysics for Science and Education, University of California, San Francisco. He was the editor-in-chief of Science magazine from 2008 until 2013, and for twelve years he served as President of the U.S. National Academy of Sciences (1993-2005). Alexander Johnson received his PhD from Harvard University and is Professor of Microbiology and Immunology at the University of California, San Francisco. Julian Lewis (1946-2014) received his DPhil from the University of Oxford and was an Emeritus Scientist at the London Research Institute of Cancer Research UK. David Morgan received his PhD from the University of California, San Francisco, and is Professor of the Department of Physiology there as well as the Director of the Biochemistry, Cell Biology, Genetics, and Developmental Biology Graduate Program. Martin Raff received his MD from McGill University and is Emeritus Professor of Biology at the Medical Research Council Laboratory for Molecular Cell Biology at University College London. **Keith Roberts** received his PhD from the University of Cambridge and was Deputy Director of the John Innes Centre, Norwich. He is Emeritus Professor at the University of East Anglia. **Peter Walter** received his PhD from the Rockefeller University in New York and is Professor of the Department of Biochemistry and Biophysics at the University of California, San Francisco, and an Investigator at the Howard Hughes Medical Institute. John Wilson received his PhD from the California Institute of Technology and pursued his postdoctoral work at Stanford University. He is Distinguished Service Professor of Biochemistry and Molecular Biology at Baylor College of Medicine in Houston. Tim Hunt received his PhD from the University of Cambridge where he taught biochemistry and cell biology for more than 20 years. He worked at Cancer Research UK until his retirement in 2010. He shared the 2001 Nobel Prize in Physiology or Medicine with Lee Hartwell and Paul Nurse.

Cover design: Cell biology is not only about the structure and function of the myriad molecules that comprise a cell, but also about how this complex chemistry is controlled. Understanding the cell's elaborate regulatory feedback networks will require quantitative approaches.

Library of Congress Cataloging-in-Publication Data

Alberts, Bruce, author.

Molecular biology of the cell / Bruce Alberts, Alexander Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter; with problems by John Wilson, Tim Hunt. -- Sixth edition.

p.; cm.

Preceded by Molecular biology of the cell / Bruce Alberts ... [et al.]. 5th ed. c2008.

Includes bibliographical references and index.

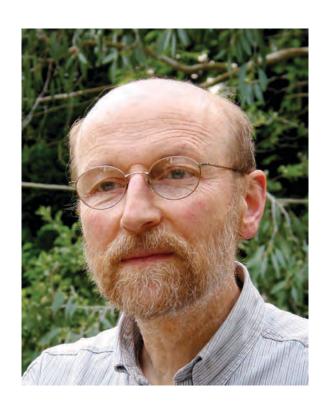
ISBN 978-0-8153-4432-2 (hardcover) -- ISBN 978-0-8153-4464-3 (paperback)

I. Title.

[DNLM: 1. Cells. 2. Molecular Biology. QU 300]

QH581.2

572.8--dc23


2014031818

Published by Garland Science, Taylor & Francis Group, LLC, an informa business, 711 Third Avenue, New York, NY 10017, US 3 Park Square, Milton Park, Abingdon, OX14 4RN, UK

Printed in the United States of America

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Julian Hart Lewis
August 12, 1946—April 30, 2014

Preface

Since the last edition of this book appeared, more than five million scientific papers have been published. There has been a parallel increase in the quantity of digital information: new data on genome sequences, protein interactions, molecular structures, and gene expression—all stored in vast databases. The challenge, for both scientists and textbook writers, is to convert this overwhelming amount of information into an accessible and up-to-date understanding of how cells work.

Help comes from a large increase in the number of review articles that attempt to make raw material easier to digest, although the vast majority of these reviews are still quite narrowly focused. Meanwhile, a rapidly growing collection of online resources tries to convince us that understanding is only a few mouse-clicks away. In some areas this change in the way we access knowledge has been highly successful—in discovering the latest information about our own medical problems, for example. But to understand something of the beauty and complexity of how living cells work, one needs more than just a wiki- this or wiki- that; it is enormously hard to identify the valuable and enduring gems from so much confusing landfill. Much more effective is a carefully wrought narrative that leads logically and progressively through the key ideas, components, and experiments in such a way that readers can build for themselves a memorable, conceptual framework for cell biology—a framework that will allow them to critically evaluate all of the new science and, more importantly, to understand it. That is what we have tried to do in *Molecular Biology of the Cell*.

In preparing this new edition, we have inevitably had to make some difficult decisions. In order to incorporate exciting new discoveries, while at the same time keeping the book portable, much has had to be excised. We have added new sections, such as those on new RNA functions, advances in stem cell biology, new methods for studying proteins and genes and for imaging cells, advances in the genetics and treatment of cancer, and timing, growth control, and morphogenesis in development.

The chemistry of cells is extremely complex, and any list of cell parts and their interactions—no matter how complete—will leave huge gaps in our understanding. We now realize that to produce convincing explanations of cell behavior will require quantitative information about cells that is coupled to sophisticated mathematical/computational approaches—some not yet invented. As a consequence, an emerging goal for cell biologists is to shift their studies more toward quantitative description and mathematical deduction. We highlight this approach and some of its methods in a new section at the end of Chapter 8.

Faced with the immensity of what we have learned about cell biology, it might be tempting for a student to imagine that there is little left to discover. In fact, the more we find out about cells, the more new questions emerge. To emphasize that our understanding of cell biology is incomplete, we have highlighted some of the major gaps in our knowledge by including *What We Don't Know* at the end of each chapter. These brief lists include only a tiny sample of the critical unanswered questions and challenges for the next generation of scientists. We derive great pleasure from the knowledge that some of our readers will provide future answers.

The more than 1500 illustrations have been designed to create a parallel narrative, closely interwoven with the text. We have increased their consistency between chapters, particularly in the use of color and of common icons; membrane pumps and channels are a good example. To avoid interruptions to the text, some material has been moved into new, readily accessible panels. Most of the important protein structures depicted have now been redrawn and consistently colored. In each

case, we now provide the corresponding Protein Data Bank (PDB) code for the protein, which can be used to access online tools that provide more information about it, such as those on the RCSB PDB website (www.rcsb.org). These connections allow readers of the book to explore more fully the proteins that lie at the core of cell biology.

John Wilson and Tim Hunt have again contributed their distinctive and imaginative problems to help students gain a more active understanding of the text. The problems emphasize quantitative approaches and encourage critical thinking about published experiments; they are now present at the end of all chapters. The answers to these problems, plus more than 1800 additional problems and solutions, all appear in the companion volume that John and Tim have written, *Molecular Biology of the Cell, Sixth Edition: The Problems Book*.

We live in a world that presents us with many complex issues related to cell biology: biodiversity, climate change, food security, environmental degradation, resource depletion, and human disease. We hope that our textbook will help the reader better understand and possibly contribute to meeting these challenges. Knowledge and understanding bring the power to intervene.

We are indebted to a large number of scientists whose generous help we mention separately in the detailed acknowledgments. Here we must mention some particularly significant contributors. For Chapter 8, Hana El-Samad provided the core of the section on Mathematical Analysis of Cell Functions, and Karen Hopkin made valuable contributions to the section on Studying Gene Expression and Function. Werner Kuhlbrandt helped to reorganize and rewrite Chapter 14 (Energy Conversion: Mitochondria and Chloroplasts). Rebecca Heald did the same for Chapter 16 (The Cytoskeleton), as did Alexander Schier for Chapter 21 (Development of Multicellular Organisms), and Matt Welch for Chapter 23 (Pathogens and Infection). Lewis Lanier aided in the writing of Chapter 24 (The Innate and Adaptive Immune Systems). Hossein Amiri generated the enormous online instructor's question bank.

Before starting out on the revision cycle for this edition, we asked a number of scientists who had used the last edition to teach cell biology students to meet with us and suggest improvements. They gave us useful feedback that has helped inform the new edition. We also benefited from the valuable input of groups of students who read most of the chapters in page proofs.

Many people and much effort are needed to convert a long manuscript and a large pile of sketches into a finished textbook. The team at Garland Science that managed this conversion was outstanding. Denise Schanck, directing operations, displayed forbearance, insight, tact, and energy throughout the journey; she guided us all unerringly, ably assisted by Allie Bochicchio and Janette Scobie. Nigel Orme oversaw our revamped illustration program, put all the artwork into its final form, and again enhanced the back cover with his graphics skills. Tiago Barros helped us refresh our presentation of protein structures. Matthew McClements designed the book and its front cover. Emma Jeffcock again laid out the final pages, managing endless rounds of proofs and last-minute changes with remarkable skill and patience; Georgina Lucas provided her with help. Michael Morales, assisted by Leah Christians, produced and assembled the complex web of videos, animations, and other materials that form the core of the online resources that accompany the book. Adam Sendroff provided us with the valuable feedback from book users around the world that informed our revision cycle. Casting expert eyes over the manuscript, Elizabeth Zayatz and Sherry Granum Lewis acted as development editors, Jo Clayton as copyeditor, and Sally Huish as proofreader. Bill Johncocks compiled the index. In London, Emily Preece fed us, while the Garland team's professional help, skills, and energy, together with their friendship, nourished us in every other way throughout the revision, making the whole process a pleasure. The authors are extremely fortunate to be supported so generously.

We thank our spouses, families, friends, and colleagues for their continuing support, which has once again made the writing of this book possible.

Just as we were completing this edition, Julian Lewis, our coauthor, friend, and colleague, finally succumbed to the cancer that he had fought so heroically for ten years. Starting in 1979, Julian made major contributions to all six editions, and, as our most elegant wordsmith, he elevated and enhanced both the style and tone of all the many chapters he touched. Noted for his careful scholarly approach, clarity and simplicity were at the core of his writing. Julian is irreplaceable, and we will all deeply miss his friendship and collaboration. We dedicate this Sixth Edition to his memory.

Note to the Reader

Structure of the Book

Although the chapters of this book can be read independently of one another, they are arranged in a logical sequence of five parts. The first three chapters of Part I cover elementary principles and basic biochemistry. They can serve either as an introduction for those who have not studied biochemistry or as a refresher course for those who have. Part II deals with the storage, expression, and transmission of genetic information. Part III presents the principles of the main experimental methods for investigating and analyzing cells; here, a new section entitled "Mathematical Analysis of Cell Functions" in Chapter 8 provides an extra dimension in our understanding of cell regulation and function. Part IV describes the internal organization of the cell. Part V follows the behavior of cells in multicellular systems, starting with development of multicellular organisms and concluding with chapters on pathogens and infection and on the innate and adaptive immune systems.

End-of-Chapter Problems

A selection of problems, written by John Wilson and Tim Hunt, appears in the text at the end of each chapter. New to this edition are problems for the last four chapters on multicellular organisms. The complete solutions to all of these problems can be found in *Molecular Biology of the Cell, Sixth Edition: The Problems Book*.

References

A concise list of selected references is included at the end of each chapter. These are arranged in alphabetical order under the main chapter section headings. These references sometimes include the original papers in which important discoveries were first reported.

Glossary Terms

Throughout the book, boldface type has been used to highlight key terms at the point in a chapter where the main discussion occurs. Italic type is used to set off important terms with a lesser degree of emphasis. At the end of the book is an expanded glossary, covering technical terms that are part of the common currency of cell biology; it should be the first resort for a reader who encounters an unfamiliar term. The complete glossary as well as a set of flashcards is available on the Student Website.

Nomenclature for Genes and Proteins

Each species has its own conventions for naming genes; the only common feature is that they are always set in italics. In some species (such as humans), gene names are spelled out all in capital letters; in other species (such as zebrafish), all in lowercase; in yet others (most mouse genes), with the first letter in uppercase and rest in lowercase; or (as in *Drosophila*) with different combinations of uppercase and lowercase, according to whether the first mutant allele to be discovered produced a dominant or recessive phenotype. Conventions for naming protein products are equally varied.

This typographical chaos drives everyone crazy. It is not just tiresome and absurd; it is also unsustainable. We cannot independently define a fresh convention for each of the next few million species whose genes we may wish to study.

Moreover, there are many occasions, especially in a book such as this, where we need to refer to a gene generically—without specifying the mouse version, the human version, the chick version, or the hippopotamus version—because they are all equivalent for the purposes of our discussion. What convention then should we use?

We have decided in this book to cast aside the different conventions that are used in individual species and follow a uniform rule: we write all gene names, like the names of people and places, with the first letter in uppercase and the rest in lowercase, but all in italics, thus: *Apc, Bazooka, Cdc2, Dishevelled, Egl1*. The corresponding protein, where it is named after the gene, will be written in the same way, but in roman rather than italic letters: Apc, Bazooka, Cdc2, Dishevelled, Egl1. When it is necessary to specify the organism, this can be done with a prefix to the gene name.

For completeness, we list a few further details of naming rules that we shall follow. In some instances, an added letter in the gene name is traditionally used to distinguish between genes that are related by function or evolution; for those genes, we put that letter in uppercase if it is usual to do so (LacZ, RecA, HoxA4). We use no hyphen to separate added letters or numbers from the rest of the name. Proteins are more of a problem. Many of them have names in their own right, assigned to them before the gene was named. Such protein names take many forms, although most of them traditionally begin with a lowercase letter (actin, hemoglobin, catalase), like the names of ordinary substances (cheese, nylon), unless they are acronyms (such as GFP, for Green Fluorescent Protein, or BMP4, for Bone Morphogenetic Protein #4). To force all such protein names into a uniform style would do too much violence to established usages, and we shall simply write them in the traditional way (actin, GFP, and so on). For the corresponding gene names in all these cases, we shall nevertheless follow our standard rule: Actin, Hemoglobin, Catalase, Bmp4, Gfp. Occasionally in our book we need to highlight a protein name by setting it in italics for emphasis; the intention will generally be clear from the context.

For those who wish to know them, the table below shows some of the official conventions for individual species—conventions that we shall mostly violate in this book, in the manner shown.

	Species-Specific C	Convention	Unified Convention Used in This Book		
Organism	Gene	Protein	Gene	Protein	
Mouse	Ноха4	Hoxa4	HoxA4	HoxA4	
	Bmp4	BMP4	Bmp4	BMP4	
	integrin α-1, Itgα1	integrin α1	Integrin α1, Itgα1	integrin α1	
Human	HOXA4	HOXA4	HoxA4	HoxA4	
Zebrafish	cyclops, cyc	Cyclops, Cyc	Cyclops, Cyc	Cyclops, Cyc	
Caenorhabditis	unc-6	UNC-6	Unc6	Unc6	
Drosophila	sevenless, sev (named after recessive phenotype)	Sevenless, SEV	Sevenless, Sev	Sevenless, Sev	
	Deformed, Dfd (named after dominant mutant phenotype)	Deformed, DFD	Deformed, Dfd	Deformed, Dfd	
Yeast					
Saccharomyces cerevisiae (budding yeast)	CDC28	Cdc28, Cdc28p	Cdc28	Cdc28	
Schizosaccharomyces pombe (fission yeast)	Cdc2	Cdc2, Cdc2p	Cdc2	Cdc2	
Arabidopsis	GAI	GAI	Gai	GAI	
E. coli	uvrA	UvrA	UvrA	UvrA	

NOTE TO THE READER xi

Molecular Biology of the Cell, Sixth Edition: The Problems Book

by John Wilson and Tim Hunt (ISBN: 978-0-8153-4453-7)

The Problems Book is designed to help students appreciate the ways in which experiments and simple calculations can lead to an understanding of how cells work. It provides problems to accompany Chapters 1–20 of Molecular Biology of the Cell. Each chapter of problems is divided into sections that correspond to those of the main textbook and review key terms, test for understanding basic concepts, pose research-based problems, and now include MCAT-style questions which help students to prepare for standardized medical school admission tests. Molecular Biology of the Cell, Sixth Edition: The Problems Book should be useful for homework assignments and as a basis for class discussion. It could even provide ideas for exam questions. Solutions for all of the problems are provided in the book. Solutions for the end-of-chapter problems for Chapters 1–24 in the main textbook are also found in The Problems Book.

RESOURCES FOR INSTRUCTORS AND STUDENTS

The teaching and learning resources for instructors and students are available online. The instructor's resources are password-protected and available only to adopting instructors. The student resources are available to everyone. We hope these resources will enhance student learning and make it easier for instructors to prepare dynamic lectures and activities for the classroom.

Instructor Resources

Instructor Resources are available on the Garland Science Instructor's Resource Site, located at www.garlandscience.com/instructors. The website provides access not only to the teaching resources for this book but also to all other Garland Science textbooks. Adopting instructors can obtain access to the site from their sales representative or by emailing science@garland.com.

Art of Molecular Biology of the Cell, Sixth Edition

The images from the book are available in two convenient formats: PowerPoint® and JPEG. They have been optimized for display on a computer. Figures are searchable by figure number, by figure name, or by keywords used in the figure legend from the book.

Figure-Integrated Lecture Outlines

The section headings, concept headings, and figures from the text have been integrated into PowerPoint presentations. These will be useful for instructors who would like a head start creating lectures for their course. Like all of our PowerPoint presentations, the lecture outlines can be customized. For example, the content of these presentations can be combined with videos and questions from the book or Question Bank, in order to create unique lectures that facilitate interactive learning.

Animations and Videos

The 174 animations and videos that are available to students are also available on the Instructor's Website in two formats. The WMV-formatted movies are created for instructors who wish to use the movies in PowerPoint presentations on Windows[®] computers; the QuickTime-formatted movies are for use in PowerPoint for Apple computers or Keynote[®] presentations. The movies can easily be downloaded using the "download" button on the movie preview page. The movies are correlated to each chapter and callouts are highlighted in color.

Media Guide

This document provides an overview to the multimedia available for students and instructors and contains the text of the voice-over narration for all of the movies.

Question Bank

Written by Hossein Amiri, University of California, Santa Cruz, this greatly expanded question bank includes a variety of question formats: multiple choice,

short answer, fill-in-the-blank, true-false, and matching. There are 35–60 questions per chapter, and a large number of the multiple-choice questions will be suitable for use with personal response systems (that is, clickers). The Question Bank was created with the philosophy that a good exam should do much more than simply test students' ability to memorize information; it should require them to reflect upon and integrate information as a part of a sound understanding. This resource provides a comprehensive sampling of questions that can be used either directly or as inspiration for instructors to write their own test questions.

Diploma® Test Generator Software

The questions from the Question Bank have been loaded into the Diploma Test Generator software. The software is easy to use and can scramble questions to create multiple tests. Questions are organized by chapter and type and can be additionally categorized by the instructor according to difficulty or subject. Existing questions can be edited and new ones added. The Test Generator is compatible with several course management systems, including Blackboard[®].

Medical Topics Guide

This document highlights medically relevant topics covered throughout *Molecular Biology of the Cell* and *The Problems Book*. It will be particularly useful for instructors with a large number of premedical, health science, or nursing students.

Blackboard and Learning Management System (LMS) Integration

The movies, book images, and student assessments that accompany the book can be integrated into Blackboard or other LMSs. These resources are bundled into a "Common Cartridge" or "Upload Package" that facilitates bulk uploading of textbook resources into Blackboard and other LMSs. The LMS Common Cartridge can be obtained on a DVD from your sales representative or by emailing science@garland.com.

Resources for Students

The resources for students are available on the *Molecular Biology of the Cell* Student Website, located at www.garlandscience.com/MBOC6-students.

Animations and Videos

There are 174 movies, covering a wide range of cell biology topics, which review key concepts in the book and illuminate subcellular processes. The movies are correlated to each chapter and callouts are highlighted in color.

Cell Explorer Slides

This application teaches cell morphology through interactive micrographs that highlight important cellular structures.

Flashcards

Each chapter contains a set of flashcards, built into the website, that allow students to review key terms from the text.

Glossary

The complete glossary from the book is available on the website and can be searched and browsed.

Acknowledgments

In writing this book we have benefited greatly from the advice of many biologists and biochemists. We would like to thank the following for their suggestions in preparing this edition, as well as those who helped in preparing the first, second, third, fourth, and fifth editions. (Those who helped on this edition are listed first, those who helped with the first, second, third, fourth, and fifth editions follow.)

General:

Steven Cook (Imperial College London), Jose A. Costova (Universidade de Santiago de Compostela), Arshad Desai (University of California, San Diego), Susan K. Dutcher (Washington University, St. Louis), Michael Elowitz (California Institute of Technology), Benjamin S. Glick (University of Chicago), Gregory Hannon (Cold Spring Harbor Laboratories), Rebecca Heald (University of California, Berkeley), Stefan Kanzok (Lovola University Chicago), Doug Kellogg (University of California, Santa Cruz), David Kimelman (University of Washington, Seattle), Maria Krasilnikova (Pennsylvania State University), Werner Kühlbrandt (Max Planck Institute of Biophysics), Lewis Lanier (University of California, San Francisco), Annette Müller-Taubenberger (Ludwig Maximilians University), Sandra Schmid (University of Texas Southwestern), Ronald D. Vale (University of California, San Francisco), D. Eric Walters (Chicago Medical School), Karsten Weis (Swiss Federal Institute of Technology)

Chapter 2: H. Lill (VU University)

Chapter 3: David S. Eisenberg (University of California, Los Angeles), F. Ulrich Hartl (Max Planck Institute of Biochemistry), Louise Johnson (University of Oxford), H. Lill (VU University), Jonathan Weissman (University of California, San Francisco)

Chapter 4: Bradley E. Bernstein (Harvard Medical School), Wendy Bickmore (MRC Human Genetics Unit, Edinburgh), Jason Brickner (Northwestern University), Gary Felsenfeld (NIH), Susan M. Gasser (University of Basel), Shiv Grewal (National Cancer Institute), Gary Karpen (University of California, Berkeley), Eugene V. Koonin, (NCBI, NLM, NIH), Hiten Madhani (University of California, San Francisco), Tom Misteli (National Cancer Institute), Geeta Narlikar (University of California, San Francisco), Maynard Olson (University of Washington, Seattle), Stephen Scherer (University of Toronto), Rolf Sternglanz (Stony Brook University), Chris L. Woodcock (University of Massachusetts, Amherst), Johanna Wysocka and lab members (Stanford School of Medicine)

Chapter 5: Oscar Aparicio (University of Southern California), Julie P. Cooper (National Cancer Institute), Neil Hunter (Howard Hughes Medical Institute), Karim Labib (University of Manchester), Joachim Li (University of California, San Francisco), Stephen West (Cancer Research UK), Richard D. Wood (University of Pittsburgh Cancer Institute)

Chapter 6: Briana Burton (Harvard University), Richard H. Ebright (Rutgers University), Daniel Finley (Harvard Medical School), Michael R. Green (University of Massachusetts Medical School), Christine Guthrie (University of California, San Francisco), Art Horwich (Yale School of Medicine), Harry Noller (University of California, Santa Cruz), David Tollervey (University of Edinburgh), Alexander J. Varshavsky (California Institute of Technology) Chapter 7: Adrian Bird (The Wellcome Trust Centre, UK), Neil Brockdorff (University of Oxford), Christine Guthrie (University of California, San Francisco), Jeannie Lee (Harvard Medical School), Michael Levine (University of California, Berkeley), Hiten Madhani (University of California, San Francisco), Duncan Odom (Cancer Research UK), Kevin Struhl (Harvard Medical School). Jesper Svejstrup (Cancer Research UK)

Chapter 8: Hana El-Samad [major contribution] (University of California, San Francisco), Karen Hopkin [major contribution], Donita Brady (Duke University), David Kashatus (University of Virginia), Melanie McGill (University of Toronto), Alex Mogilner (University of California, Davis), Richard Morris (John Innes Centre, UK), Prasanth Potluri (The Children's Hospital of Philadelphia Research Institute), Danielle Vidaurre (University of Toronto), Carmen Warren (University of California, Los Angeles), Ian Woods (Ithaca College)

Chapter 9: Douglas J. Briant (University of Victoria), Werner Kühlbrandt (Max Planck Institute of Biophysics), Jeffrey Lichtman (Harvard University), Jennifer Lippincott-Schwartz (NIH), Albert Pan (Georgia Regents University), Peter Shaw (John Innes Centre, UK), Robert H. Singer (Albert Einstein School of Medicine), Kurt Thorn (University of California, San Francisco)

Chapter 10: Ari Helenius (Swiss Federal Institute of Technology), Werner Kühlbrandt (Max Planck Institute of Biophysics), H. Lill (VU University), Satyajit Mayor (National Centre for Biological Sciences, India), Kai Simons (Max Planck Institute of Molecular Cell Biology and Genetics), Gunnar von Heijne (Stockholm University), Tobias Walther (Harvard University)

Chapter 11: Graeme Davis (University of California, San Francisco), Robert Edwards (University of California, San

Francisco), Bertil Hille (University of Washington, Seattle), Lindsay Hinck (University of California, Santa Cruz), Werner Kühlbrandt (Max Planck Institute of Biophysics), H. Lill (VU University), Roger Nicoll (University of California, San Francisco), Poul Nissen (Aarhus University), Robert Stroud (University of California, San Francisco), Karel Svoboda (Howard Hughes Medical Institute), Robert Tampé (Goethe-University Frankfurt)

Chapter 12: John Aitchison (Institute for System Biology, Seattle), Amber English (University of Colorado at Boulder), Ralf Erdmann (Ruhr University of Bochum), Larry Gerace (The Scripps Research Institute, La Jolla), Ramanujan Hegde (MRC Laboratory of Molecular Biology, Cambridge, UK), Martin W. Hetzer (The Salk Institute), Lindsay Hinck (University of California, Santa Cruz), James A. McNew (Rice University), Nikolaus Pfanner (University of Freiberg), Peter Rehling (University of Göttingen), Michael Rout (The Rockefeller University), Danny J. Schnell (University of Massachusetts, Amherst), Sebastian Schuck (University of Heidelberg), Suresh Subramani (University of California, San Diego), Gia Voeltz (University School of Medicine)

Chapter 13: Douglas J. Briant (University of Victoria, Canada), Scott D. Emr (Cornell University), Susan Ferro-Novick (University of California, San Diego), Benjamin S. Glick (University of Chicago), Ari Helenius (Swiss Federal Institute of Technology), Lindsay Hinck (University of California, Santa Cruz), Reinhard Jahn (Max Planck Institute for Biophysical Chemistry), Ira Mellman (Genentech), Peter Novick (University of California, San Diego), Hugh Pelham (MRC Laboratory of Molecular Biology, Cambridge, UK), Graham Warren (Max F. Perutz Laboratories, Vienna), Marino Zerial (Max Planck Institute of Molecular Cell Biology and Genetics)

Chapter 14: Werner Kühlbrandt [major contribution] (Max Planck Institute of Biophysics), Thomas D. Fox (Cornell University), Cynthia Kenyon (University of California, San Francisco), Nils-Göran Larsson (Max Planck Institute for Biology of Aging), Jodi Nunnari (University of California, Davis), Patrick O'Farrell (University of California, San Francisco), Alastair Stewart (The Victor Chang Cardiac Research Institute, Australia), Daniela Stock (The Victor Chang Cardiac Research Institute, Australia), Michael P. Yaffe (California Institute for Regenerative Medicine) **Chapter 15:** Henry R. Bourne (University of California, San Francisco), Dennis Bray (University of Cambridge), Douglas J. Briant (University of Victoria, Canada), James Briscoe (MRC National Institute for Medical Research, UK), James Ferrell (Stanford University), Matthew Freeman (MRC Laboratory of Molecular Biology, Cambridge, UK), Alan Hall (Memorial Sloan Kettering Cancer Center), Carl-Henrik Heldin (Uppsala University), James A. McNew (Rice University), Roel Nusse (Stanford University), Julie Pitcher (University College London)

Chapter 16: Rebecca Heald [major contribution] (University of California, Berkeley), Anna Akhmanova (Utrecht University), Arshad Desai (University of California, San Diego), Velia Fowler (The Scripps Research Institute, La Jolla), Vladimir Gelfand (Northwestern University), Robert Goldman (Northwestern University), Alan Rick Horwitz (University of Virginia), Wallace Marshall (University of California, San Francisco), J. Richard McIntosh

(University of Colorado, Boulder), Maxence Nachury (Stanford School of Medicine), Eva Nogales (University of California, Berkeley), Samara Reck-Peterson (Harvard Medical School), Ronald D. Vale (University of California, San Francisco), Richard B. Vallee (Columbia University), Michael Way (Cancer Research UK), Orion Weiner (University of California, San Francisco), Matthew Welch (University of California, Berkeley)

Chapter 17: Douglas J. Briant (University of Victoria, Canada), Lindsay Hinck (University of California, Santa Cruz), James A. McNew (Rice University)

Chapter 18: Emily D. Crawford (University of California, San Francisco), James A. McNew (Rice University), Shigekazu Nagata (Kyoto University), Jim Wells (University of California, San Francisco)

Chapter 19: Jeffrey Axelrod (Stanford University School of Medicine), John Couchman (University of Copenhagen), Johan de Rooij (The Hubrecht Institute, Utrecht), Benjamin Geiger (Weizmann Institute of Science, Israel), Andrew P. Gilmore (University of Manchester), Tony Harris (University of Toronto), Martin Humphries (University of Manchester), Charles Streuli (University of Manchester), Masatoshi Takeichi (RIKEN Center for Developmental Biology, Japan), Barry Thompson (Cancer Research UK), Kenneth M. Yamada (NIH), Alpha Yap (The University of Queensland, Australia)

Chapter 20: Anton Berns (Netherlands Cancer Institute), J. Michael Bishop (University of California, San Francisco), Trever Bivona (University of California, San Francisco), Fred Bunz (Johns Hopkins University), Paul Edwards (University of Cambridge), Ira Mellman (Genentech), Caetano Reis e Sousa (Cancer Research UK), Marc Shuman (University of California, San Francisco), Mike Stratton (Wellcome Trust Sanger Institute, UK), Ian Tomlinson (Cancer Research UK)

Chapter 21: Alex Schier [major contribution] (Harvard University), Markus Affolter (University of Basel), Victor Ambros (University of Massachusetts, Worcester), James Briscoe (MRC National Institute for Medical Research, UK), Donald Brown (Carnegie Institution for Science, Baltimore), Steven Burden (New York University School of Medicine), Moses Chao (New York University School of Medicine), Caroline Dean (John Innes Centre, UK), Chris Doe (University of Oregon, Eugene), Uwe Drescher (King's College London), Gordon Fishell (New York University School of Medicine), Brigid Hogan (Duke University), Phil Ingham (Institute of Molecular and Cell Biology, Singapore), Laura Johnston (Columbia University), David Kingsley (Stanford University), Tom Kornberg (University of California, San Francisco), Richard Mann (Columbia University), Andy McMahon (University of Southern California), Marek Mlodzik (Mount Sinai Hospital, New York), Patrick O'Farrell (University of California, San Francisco), Duojia Pan (Johns Hopkins Medical School), Olivier Pourquie (Harvard Medical School), Erez Raz (University of Muenster), Chris Rushlow (New York University), Stephen Small (New York University), Marc Tessier-Lavigne (Rockefeller University)

Chapter 22: Simon Hughes (King's College London), Rudolf Jaenisch (Massachusetts Institute of Technology), Arnold Kriegstein (University of California, San Francisco), Doug Melton (Harvard University), Stuart Orkin (Harvard ACKNOWLEDGMENTS xv

University), Thomas A. Reh (University of Washington, Seattle), Amy Wagers (Harvard University), Fiona M. Watt (Wellcome Trust Centre for Stem Cell Research, UK), Douglas J. Winton (Cancer Research UK), Shinya Yamanaka (Kyoto University)

Chapter 23: Matthew Welch [major contribution] (University of California, Berkeley), Ari Helenius (Swiss Federal Institute of Technology), Dan Portnoy (University of California, Berkeley), David Sibley (Washington University, St. Louis), Michael Way (Cancer Research UK) Chapter 24: Lewis Lanier (University of California, San Francisco).

Readers: Najla Arshad (Indian Institute of Science), Venice Chiueh (University of California, Berkeley), Quyen Huynh (University of Toronto), Rachel Kooistra (Loyola University, Chicago), Wes Lewis (University of Alabama), Eric Nam (University of Toronto), Vladimir Ryvkin (Stony Brook University), Laasya Samhita (Indian Institute of Science), John Senderak (Jefferson Medical College), Phillipa Simons (Imperial College, UK), Anna Constance Vind (University of Copenhagen), Steve Wellard (Pennsylvania State University), Evan Whitehead (University of California, Berkeley), Carrie Wilczewski (Loyola University, Chicago), Anna Wing (Pennsylvania State University), John Wright (University of Alabama)

First, second, third, fourth, and fifth editions:

Jerry Adams (The Walter and Eliza Hall Institute of Medical Research, Australia), Ralf Adams (London Research Institute), David Agard (University of California, San Francisco), Julie Ahringer (The Gurdon Institute, UK), Michael Akam (University of Cambridge), David Allis (The Rockefeller University), Wolfhard Almers (Oregon Health and Science University), Fred Alt (CBR Institute for Biomedical Research, Boston), Linda Amos (MRC Laboratory of Molecular Biology, Cambridge), Raul Andino (University of California, San Francisco), Clay Armstrong (University of Pennsylvania), Martha Arnaud (University of California, San Francisco), Spyros Artavanis-Tsakonas (Harvard Medical School), Michael Ashburner (University of Cambridge), Jonathan Ashmore (University College London), Laura Attardi (Stanford University), Tayna Awabdy (University of California, San Francisco), Jeffrey Axelrod (Stanford University Medical Center), Peter Baker (deceased), David Baldwin (Stanford University), Michael Banda (University of California, San Francisco), Cornelia Bargmann (The Rockefeller University), Ben Barres (Stanford University), David Bartel (Massachusetts Institute of Technology), Konrad Basler (University of Zurich), Wolfgang Baumeister (Max Planck Institute of Biochemistry), Michael Bennett (Albert Einstein College of Medicine), Darwin Berg (University of California, San Diego), Anton Berns (Netherlands Cancer Institute), Merton Bernfield (Harvard Medical School), Michael Berridge (The Babraham Institute, Cambridge, UK), Walter Birchmeier (Max Delbrück Center for Molecular Medicine, Germany), Adrian Bird (Wellcome Trust Centre, UK), David Birk (UMDNJ—Robert Wood Johnson Medical School), Michael Bishop (University of California, San Francisco), Elizabeth Blackburn (University of California, San Francisco), Tim Bliss (National Institute for Medical Research, London), Hans Bode (University of California, Irvine), Piet Borst (Jan Swammerdam Institute, University

of Amsterdam), Henry Bourne (University of California, San Francisco), Alan Boyde (University College London), Martin Brand (University of Cambridge), Carl Branden (deceased), Andre Brandli (Swiss Federal Institute of Technology, Zurich), Dennis Bray (University of Cambridge), Mark Bretscher (MRC Laboratory of Molecular Biology, Cambridge), James Briscoe (National Institute for Medical Research, UK), Marianne Bronner-Fraser (California Institute of Technology), Robert Brooks (King's College London), Barry Brown (King's College London), Michael Brown (University of Oxford), Michael Bulger (University of Rochester Medical Center), Fred Bunz (Johns Hopkins University), Steve Burden (New York University of Medicine), Max Burger (University of Basel), Stephen Burley (SGX Pharmaceuticals), Keith Burridge (University of North Carolina, Chapel Hill), John Cairns (Radcliffe Infirmary, Oxford), Patricia Calarco (University of California, San Francisco), Zacheus Cande (University of California, Berkeley), Lewis Cantley (Harvard Medical School), Charles Cantor (Columbia University), Roderick Capaldi (University of Oregon), Mario Capecchi (University of Utah), Michael Carey (University of California, Los Angeles), Adelaide Carpenter (University of California, San Diego), John Carroll (University College London), Tom Cavalier-Smith (King's College London), Pierre Chambon (University of Strasbourg), Hans Clevers (Hubrecht Institute, The Netherlands), Enrico Coen (John Innes Institute, Norwich, UK), Philip Cohen (University of Dundee, Scotland), Robert Cohen (University of California, San Francisco), Stephen Cohen (EMBL Heidelberg, Germany), Roger Cooke (University of California, San Francisco), John Cooper (Washington University School of Medicine, St. Louis), Michael Cox (University of Wisconsin, Madison), Nancy Craig (Johns Hopkins University), James Crow (University of Wisconsin, Madison), Stuart Cull-Candy (University College London), Leslie Dale (University College London), Caroline Damsky (University of California, San Francisco), Johann De Bono (The Institute of Cancer Research, UK), Anthony DeFranco (University of California, San Francisco), Abby Dernburg (University of California, Berkeley), Arshad Desai (University of California, San Diego), Michael Dexter (The Wellcome Trust, UK), John Dick (University of Toronto, Canada), Christopher Dobson (University of Cambridge), Russell Doolittle (University of California, San Diego), W. Ford Doolittle (Dalhousie University, Canada), Julian Downward (Cancer Research UK), Keith Dudley (King's College London), Graham Dunn (MRC Cell Biophysics Unit, London), Jim Dunwell (John Innes Institute, Norwich, UK), Bruce Edgar (Fred Hutchinson Cancer Research Center, Seattle), Paul Edwards (University of Cambridge), Robert Edwards (University of California, San Francisco), David Eisenberg (University of California, Los Angeles), Sarah Elgin (Washington University, St. Louis), Ruth Ellman (Institute of Cancer Research, Sutton, UK), Beverly Emerson (The Salk Institute), Charles Emerson (University of Virginia), Scott D. Emr (Cornell University), Sharyn Endow (Duke University), Lynn Enquist (Princeton University), Tariq Enver (Institute of Cancer Research, London), David Epel (Stanford University), Gerard Evan (University of California, Comprehensive Cancer Center), Ray Evert (University of Wisconsin, Madison), Matthias Falk (Lehigh University), Stanley Falkow (Stanford

University), Douglas Fearon (University of Cambridge), Gary Felsenfeld (NIH), Stuart Ferguson (University of Oxford), James Ferrell (Stanford University), Christine Field (Harvard Medical School), Daniel Finley (Harvard University), Gary Firestone (University of California, Berkeley), Gerald Fischbach (Columbia University), Robert Fletterick (University of California, San Francisco), Harvey Florman (Tufts University), Judah Folkman (Harvard Medical School), Larry Fowke (University of Saskatchewan, Canada), Jennifer Frazier (Exploratorium®, San Francisco), Matthew Freeman (Laboratory of Molecular Biology, UK), Daniel Friend (University of California, San Francisco), Elaine Fuchs (University of Chicago), Joseph Gall (Carnegie Institution of Washington), Richard Gardner (University of Oxford), Anthony Gardner-Medwin (University College London), Peter Garland (Institute of Cancer Research, London), David Garrod (University of Manchester, UK), Susan M. Gasser (University of Basel), Walter Gehring (Biozentrum, University of Basel), Benny Geiger (Weizmann Institute of Science, Rehovot, Israel), Larry Gerace (The Scripps Research Institute), Holger Gerhardt (London Research Institute), John Gerhart (University of California, Berkeley), Günther Gerisch (Max Planck Institute of Biochemistry), Frank Gertler (Massachusetts Institute of Technology), Sankar Ghosh (Yale University School of Medicine), Alfred Gilman (The University of Texas Southwestern Medical Center), Reid Gilmore (University of Massachusetts, Amherst), Bernie Gilula (deceased), Charles Gilvarg (Princeton University), Benjamin S. Glick (University of Chicago), Michael Glotzer (University of Chicago), Larry Goldstein (University of California, San Diego), Bastien Gomperts (University College Hospital Medical School, London), Daniel Goodenough (Harvard Medical School), Jim Goodrich (University of Colorado, Boulder), Jeffrey Gordon (Washington University, St. Louis), Peter Gould (Middlesex Hospital Medical School, London), Alan Grafen (University of Oxford), Walter Gratzer (King's College London), Michael Gray (Dalhousie University), Douglas Green (St. Jude Children's Hospital), Howard Green (Harvard University), Michael Green (University of Massachusetts, Amherst), Leslie Grivell (University of Amsterdam), Carol Gross (University of California, San Francisco), Frank Grosveld (Erasmus Universiteit, The Netherlands), Michael Grunstein (University of California, Los Angeles), Barry Gumbiner (Memorial Sloan Kettering Cancer Center), Brian Gunning (Australian National University, Canberra), Christine Guthrie (University of California, San Francisco), James Haber (Brandeis University), Ernst Hafen (Universitat Zurich), David Haig (Harvard University), Andrew Halestrap (University of Bristol, UK), Alan Hall (Memorial Sloan Kettering Cancer Center), Jeffrey Hall (Brandeis University), John Hall (University of Southampton, UK) Zach Hall (University of California, San Francisco), Douglas Hanahan (University of California, San Francisco), David Hanke (University of Cambridge), Nicholas Harberd (University of Oxford), Graham Hardie (University of Dundee, Scotland), Richard Harland (University of California, Berkeley), Adrian Harris (Cancer Research UK), John Harris (University of Otago, New Zealand), Stephen Harrison (Harvard University), Leland Hartwell (University of Washington, Seattle), Adrian Harwood (MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, London),

Scott Hawley (Stowers Institute for Medical Research, Kansas City), Rebecca Heald (University of California, Berkeley), John Heath (University of Birmingham, UK), Ramanujan Hegde (NIH), Carl-Henrik Heldin (Uppsala University), Ari Helenius (Swiss Federal Institute of Technology), Richard Henderson (MRC Laboratory of Molecular Biology, Cambridge, UK), Glenn Herrick (University of Utah), Ira Herskowitz (deceased), Bertil Hille (University of Washington, Seattle), Alan Hinnebusch (NIH, Bethesda), Brigid Hogan (Duke University), Nancy Hollingsworth (State University of New York, Stony Brook), Frank Holstege (University Medical Center, The Netherlands), Leroy Hood (Institute for Systems Biology, Seattle), John Hopfield (Princeton University), Robert Horvitz (Massachusetts Institute of Technology), Art Horwich (Yale University School of Medicine), David Housman (Massachusetts Institute of Technology), Joe Howard (Max Planck Institute of Molecular Cell Biology and Genetics), Jonathan Howard (University of Washington, Seattle), James Hudspeth (The Rockefeller University), Simon Hughes (King's College London), Martin Humphries (University of Manchester, UK), Tim Hunt (Cancer Research UK), Neil Hunter (University of California, Davis), Laurence Hurst (University of Bath, UK), Jeremy Hyams (University College London), Tony Hyman (Max Planck Institute of Molecular Cell Biology and Genetics), Richard Hynes (Massachusetts Institute of Technology), Philip Ingham (University of Sheffield, UK), Kenneth Irvine (Rutgers University), Robin Irvine (University of Cambridge), Norman Iscove (Ontario Cancer Institute, Toronto), David Ish-Horowicz (Cancer Research UK), Lily Jan (University of California, San Francisco), Charles Janeway (deceased), Tom Jessell (Columbia University), Arthur Johnson (Texas A&M University), Louise Johnson (deceased), Andy Johnston (John Innes Institute, Norwich, UK), E.G. Jordan (Queen Elizabeth College, London), Ron Kaback (University of California, Los Angeles), Michael Karin (University of California, San Diego), Eric Karsenti (European Molecular Biology Laboratory, Germany), Ken Keegstra (Michigan State University), Ray Keller (University of California, Berkeley), Douglas Kellogg (University of California, Santa Cruz), Regis Kelly (University of California, San Francisco), John Kendrick-Jones (MRC Laboratory of Molecular Biology, Cambridge), Cynthia Kenyon (University of California, San Francisco), Roger Keynes (University of Cambridge), Judith Kimble (University of Wisconsin, Madison), Robert Kingston (Massachusetts General Hospital), Marc Kirschner (Harvard University), Richard Klausner (NIH), Nancy Kleckner (Harvard University), Mike Klymkowsky (University of Colorado, Boulder), Kelly Komachi (University of California, San Francisco), Eugene Koonin (NIH), Juan Korenbrot (University of California, San Francisco), Roger Kornberg (Stanford University), Tom Kornberg (University of California, San Francisco), Stuart Kornfeld (Washington University, St. Louis), Daniel Koshland (University of California, Berkeley), Douglas Koshland (Carnegie Institution of Washington, Baltimore), Marilyn Kozak (University of Pittsburgh), Mark Krasnow (Stanford University), Werner Kühlbrandt (Max Planck Institute for Biophysics), John Kuriyan (University of California, Berkeley), Robert Kypta (MRC Laboratory for Molecular Cell Biology, London), Peter Lachmann

ACKNOWLEDGMENTS xvii

(MRC Centre, Cambridge), Ulrich Laemmli (University of Geneva, Switzerland), Trevor Lamb (University of Cambridge), Hartmut Land (Cancer Research UK), David Lane (University of Dundee, Scotland), Jane Langdale (University of Oxford), Lewis Lanier (University of California, San Francisco), Jay Lash (University of Pennsylvania), Peter Lawrence (MRC Laboratory of Molecular Biology, Cambridge), Paul Lazarow (Mount Sinai School of Medicine), Robert J. Lefkowitz (Duke University), Michael Levine (University of California, Berkeley), Warren Levinson (University of California, San Francisco), Alex Levitzki (Hebrew University, Israel), Ottoline Leyser (University of York, UK), Joachim Li (University of California, San Francisco), Tomas Lindahl (Cancer Research UK), Vishu Lingappa (University of California, San Francisco), Jennifer Lippincott-Schwartz (NIH), Joseph Lipsick (Stanford University School of Medicine), Dan Littman (New York University School of Medicine), Clive Lloyd (John Innes Institute, Norwich, UK), Richard Locksley (University of California, San Francisco), Richard Losick (Harvard University), Daniel Louvard (Institut Curie, France), Robin Lovell-Badge (National Institute for Medical Research, London), Scott Lowe (Cold Spring Harbor Laboratory), Shirley Lowe (University of California, San Francisco), Reinhard Lührman (Max Planck Institute of Biophysical Chemistry), Michael Lynch (Indiana University), Laura Machesky (University of Birmingham, UK), Hiten Madhani (University of California, San Francisco), James Maller (University of Colorado Medical School), Tom Maniatis (Harvard University), Colin Manoil (Harvard Medical School), Elliott Margulies (NIH), Philippa Marrack (National Jewish Medical and Research Center, Denver), Mark Marsh (Institute of Cancer Research, London), Wallace Marshall (University of California, San Francisco), Gail Martin (University of California, San Francisco), Paul Martin (University College London), Joan Massagué (Memorial Sloan Kettering Cancer Center), Christopher Mathews (Oregon State University), Brian McCarthy (University of California, Irvine), Richard McCarty (Cornell University), William McGinnis (University of California, San Diego), Anne McLaren (Wellcome/Cancer Research Campaign Institute, Cambridge), Frank McNally (University of California, Davis), Freiderick Meins (Freiderich Miescher Institut, Basel), Stephanie Mel (University of California, San Diego), Ira Mellman (Genentech), Barbara Meyer (University of California, Berkeley), Elliot Meyerowitz (California Institute of Technology), Chris Miller (Brandeis University), Robert Mishell (University of Birmingham, UK), Avrion Mitchison (University College London), N.A. Mitchison (University College London), Timothy Mitchison (Harvard Medical School), Quinn Mitrovich (University of California, San Francisco), Peter Mombaerts (The Rockefeller University), Mark Mooseker (Yale University), David Morgan (University of California, San Francisco), Michelle Moritz (University of California, San Francisco), Montrose Moses (Duke University), Keith Mostov (University of California, San Francisco), Anne Mudge (University College London), Hans Müller-Eberhard (Scripps Clinic and Research Institute), Alan Munro (University of Cambridge), J. Murdoch Mitchison (Harvard University), Richard Myers (Stanford University), Diana Myles (University of California, Davis), Andrew Murray (Harvard University), Shigekazu

Nagata (Kyoto University, Japan), Geeta Narlikar (University of California, San Francisco), Kim Nasmyth (University of Oxford), Mark E. Nelson (University of Illinois, Urbana-Champaign), Michael Neuberger (deceased), Walter Neupert (University of Munich, Germany), David Nicholls (University of Dundee, Scotland), Roger Nicoll (University of California, San Francisco), Suzanne Noble (University of California, San Francisco), Harry Noller (University of California, Santa Cruz), Jodi Nunnari (University of California, Davis), Paul Nurse (Francis Crick Institute), Roel Nusse (Stanford University), Michael Nussenzweig (Rockefeller University), Duncan O'Dell (deceased), Patrick O'Farrell (University of California, San Francisco), Bjorn Olsen (Harvard Medical School), Maynard Olson (University of Washington, Seattle), Stuart Orkin (Harvard University), Terry Orr-Weaver (Massachusetts Institute of Technology), Erin O'Shea (Harvard University), Dieter Osterhelt (Max Planck Institute of Biochemistry), William Otto (Cancer Research UK), John Owen (University of Birmingham, UK), Dale Oxender (University of Michigan), George Palade (deceased), Barbara Panning (University of California, San Francisco), Roy Parker (University of Arizona, Tucson), William W. Parson (University of Washington, Seattle), Terence Partridge (MRC Clinical Sciences Centre, London), William E. Paul (NIH), Tony Pawson (deceased), Hugh Pelham (MRC, UK), Robert Perry (Institute of Cancer Research, Philadelphia), Gordon Peters (Cancer Research UK), Greg Petsko (Brandeis University), Nikolaus Pfanner (University of Freiburg, Germany), David Phillips (The Rockefeller University), Jeremy Pickett-Heaps (The University of Melbourne, Australia), Jonathan Pines (Gurdon Institute, Cambridge), Julie Pitcher (University College London), Jeffrey Pollard (Albert Einstein College of Medicine), Tom Pollard (Yale University), Bruce Ponder (University of Cambridge), Daniel Portnoy (University of California, Berkeley), James Priess (University of Washington, Seattle), Darwin Prockop (Tulane University), Mark Ptashne (Memorial Sloan Kettering Cancer Center), Dale Purves (Duke University), Efraim Racker (Cornell University), Jordan Raff (University of Oxford), Klaus Rajewsky (Max Delbrück Center for Molecular Medicine, Germany), George Ratcliffe (University of Oxford), Elio Raviola (Harvard Medical School), Martin Rechsteiner (University of Utah, Salt Lake City), David Rees (National Institute for Medical Research, London), Thomas A. Reh (University of Washington, Seattle), Louis Reichardt (University of California, San Francisco), Renee Reijo (University of California, San Francisco), Caetano Reis e Sousa (Cancer Research UK), Fred Richards (Yale University), Conly Rieder (Wadsworth Center, Albany), Phillips Robbins (Massachusetts Institute of Technology), Elizabeth Robertson (The Wellcome Trust Centre for Human Genetics, UK), Elaine Robson (University of Reading, UK), Robert Roeder (The Rockefeller University), Joel Rosenbaum (Yale University), Janet Rossant (Mount Sinai Hospital, Toronto), Jesse Roth (NIH), Jim Rothman (Memorial Sloan Kettering Cancer Center), Rodney Rothstein (Columbia University), Erkki Ruoslahti (La Jolla Cancer Research Foundation), Gary Ruvkun (Massachusetts General Hospital), David Sabatini (New York University), Alan Sachs (University of California, Berkeley), Edward Salmon (University of North Carolina,

Chapel Hill), Aziz Sancar (University of North Carolina, Chapel Hill), Joshua Sanes (Harvard University), Peter Sarnow (Stanford University), Lisa Satterwhite (Duke University Medical School), Robert Sauer (Massachusetts Institute of Technology), Ken Sawin (The Wellcome Trust Centre for Cell Biology, UK), Howard Schachman (University of California, Berkeley), Gerald Schatten (Pittsburgh Development Center), Gottfried Schatz (Biozentrum, University of Basel), Randy Schekman (University of California, Berkeley), Richard Scheller (Stanford University), Giampietro Schiavo (Cancer Research UK), Ueli Schibler (University of Geneva, Switzerland), Joseph Schlessinger (New York University Medical Center), Danny J. Schnell (University of Massachusetts, Amherst), Michael Schramm (Hebrew University, Israel), Robert Schreiber (Washington University School of Medicine), James Schwartz (Columbia University), Ronald Schwartz (NIH), François Schweisguth (Institut Pasteur, France), John Scott (University of Manchester, UK), John Sedat (University of California, San Francisco), Peter Selby (Cancer Research UK), Zvi Sellinger (Hebrew University, Israel), Gregg Semenza (Johns Hopkins University), Philippe Sengel (University of Grenoble, France), Peter Shaw (John Innes Institute, Norwich, UK), Michael Sheetz (Columbia University), Morgan Sheng (Massachusetts Institute of Technology), Charles Sherr (St. Jude Children's Hospital), David Shima (Cancer Research UK), Samuel Silverstein (Columbia University), Melvin I. Simon (California Institute of Technology), Kai Simons (Max Planck Institute of Molecular Cell Biology and Genetics), Jonathan Slack (Cancer Research UK), Alison Smith (John Innes Institute, Norfolk, UK), Austin Smith (University of Edinburgh, UK), Jim Smith (The Gurdon Institute, UK), John Maynard Smith (University of Sussex, UK), Mitchell Sogin (Woods Hole Institute), Frank Solomon (Massachusetts Institute of Technology), Michael Solursh (University of Iowa), Bruce Spiegelman (Harvard Medical School), Timothy Springer (Harvard Medical School), Mathias Sprinzl (University of Bayreuth, Germany), Scott Stachel (University of California, Berkeley), Andrew Staehelin (University of Colorado, Boulder), David Standring (University of California, San Francisco), Margaret Stanley (University of Cambridge), Martha Stark (University of California, San Francisco), Wilfred Stein (Hebrew University, Israel), Malcolm Steinberg (Princeton University), Ralph Steinman (deceased), Len Stephens (The Babraham Institute, UK), Paul Sternberg (California Institute of Technology), Chuck Stevens (The Salk Institute), Murray Stewart (MRC Laboratory of Molecular Biology, Cambridge), Bruce Stillman (Cold Spring Harbor Laboratory), Charles Streuli (University of Manchester, UK), Monroe Strickberger (University of Missouri, St. Louis), Robert Stroud (University of California, San Francisco), Michael Stryker (University of California, San Francisco), William Sullivan (University of California, Santa Cruz), Azim Surani (The Gurdon Institute, University of Cambridge), Daniel Szollosi (Institut National de la Recherche Agronomique, France), Jack Szostak (Harvard Medical School), Clifford Tabin (Harvard Medical School), Masatoshi Takeichi (RIKEN Center for Developmental Biology, Japan), Nicolas Tapon (London Research Institute), Diethard Tautz (University of Cologne, Germany), Julie Theriot (Stanford University),

Roger Thomas (University of Bristol, UK), Craig Thompson (Memorial Sloan Kettering Cancer Center), Janet Thornton (European Bioinformatics Institute, UK), Vernon Thornton (King's College London), Cheryll Tickle (University of Dundee, Scotland), Jim Till (Ontario Cancer Institute, Toronto), Lewis Tilney (University of Pennsylvania), David Tollervey (University of Edinburgh, UK), Ian Tomlinson (Cancer Research UK), Nick Tonks (Cold Spring Harbor Laboratory), Alain Townsend (Institute of Molecular Medicine, John Radcliffe Hospital, Oxford), Paul Travers (Scottish Institute for Regeneration Medicine), Robert Trelstad (UMDNJ—Robert Wood Johnson Medical School), Anthony Trewavas (Edinburgh University, Scotland), Nigel Unwin (MRC Laboratory of Molecular Biology, Cambridge), Victor Vacquier (University of California, San Diego), Ronald D. Vale (University of California, San Francisco), Tom Vanaman (University of Kentucky), Harry van der Westen (Wageningen, The Netherlands), Harold Varmus (National Cancer Institute, United States), Alexander J. Varshavsky (California Institute of Technology), Donald Voet (University of Pennsylvania), Harald von Boehmer (Harvard Medical School), Madhu Wahi (University of California, San Francisco), Virginia Walbot (Stanford University), Frank Walsh (GlaxoSmithKline, UK), Trevor Wang (John Innes Institute, Norwich, UK), Xiaodong Wang (The University of Texas Southwestern Medical School), Yu-Lie Wang (Worcester Foundation for Biomedical Research, MA), Gary Ward (University of Vermont), Anne Warner (University College London), Graham Warren (Yale University School of Medicine), Paul Wassarman (Mount Sinai School of Medicine), Clare Waterman-Storer (The Scripps Research Institute), Fiona Watt (Cancer Research UK), John Watts (John Innes Institute, Norwich, UK), Klaus Weber (Max Planck Institute for Biophysical Chemistry), Martin Weigert (Institute of Cancer Research, Philadelphia), Robert Weinberg (Massachusetts Institute of Technology), Harold Weintraub (deceased), Karsten Weis (Swiss Federal Institute of Technology), Irving Weissman (Stanford University), Jonathan Weissman (University of California, San Francisco), Susan R. Wente (Vanderbilt University School of Medicine), Norman Wessells (University of Oregon, Eugene), Stephen West (Cancer Research UK), Judy White (University of Virginia), William Wickner (Dartmouth College), Michael Wilcox (deceased), Lewis T. Williams (Chiron Corporation), Patrick Williamson (University of Massachusetts, Amherst), Keith Willison (Chester Beatty Laboratories, London), John Wilson (Baylor University), Alan Wolffe (deceased), Richard Wolfenden (University of North Carolina, Chapel Hill), Sandra Wolin (Yale University School of Medicine), Lewis Wolpert (University College London), Richard D. Wood (University of Pittsburgh Cancer Institute), Abraham Worcel (University of Rochester), Nick Wright (Cancer Research UK), John Wyke (Beatson Institute for Cancer Research, Glasgow), Michael P. Yaffe (California Institute for Regenerative Medicine), Kenneth M. Yamada (NIH), Keith Yamamoto (University of California, San Francisco), Charles Yocum (University of Michigan, Ann Arbor), Peter Yurchenco (UMDNJ-Robert Wood Johnson Medical School), Rosalind Zalin (University College London), Patricia Zambryski (University of California, Berkeley), Marino Zerial (Max Planck Institute of Molecular Cell Biology and Genetics).

Contents

PART I	INTRODUCTION TO THE CELL	1
Chapter 1	Cells and Genomes	1
Chapter 2	Cell Chemistry and Bioenergetics	43
Chapter 3	Proteins	109
PART II	BASIC GENETIC MECHANISMS	173
Chapter 4	DNA, Chromosomes, and Genomes	173
Chapter 5	DNA Replication, Repair, and Recombination	237
Chapter 6	How Cells Read the Genome: From DNA to Protein	299
Chapter 7	Control of Gene Expression	369
PART III	WAYS OF WORKING WITH CELLS	439
Chapter 8	Analyzing Cells, Molecules, and Systems	439
Chapter 9	Visualizing Cells	529
PART IV	INTERNAL ORGANIZATION OF THE CELL	565
Chapter 10	Membrane Structure	565
Chapter 11	Membrane Transport of Small Molecules and the Electrical Properties of Membranes	597
Chapter 12	Intracellular Compartments and Protein Sorting	641
Chapter 13	Intracellular Membrane Traffic	695
Chapter 14	Energy Conversion: Mitochondria and Chloroplasts	753
Chapter 15	Cell Signaling	813
Chapter 16	The Cytoskeleton	889
Chapter 17	The Cell Cycle	963
Chapter 18	Cell Death	1021
PART V	CELLS IN THEIR SOCIAL CONTEXT	1035
Chapter 19	Cell Junctions and the Extracellular Matrix	1035
Chapter 20	Cancer	1091
Chapter 21	Development of Multicellular Organisms	1145
Chapter 22	Stem Cells and Tissue Renewal	1217
Chapter 23	Pathogens and Infection	1263
Chapter 24	The Innate and Adaptive Immune Systems	1297
Glossary		G: 1
Index		l: 1
Tables	The Genetic Code, Amino Acids	T: 1

Special Features

IADLE I-2	Some Model Organisms and Their Genomes	29
TABLE 2-1	Covalent and Noncovalent Chemical Bonds	45
TABLE 2-2	Relationship Between the Standard Free-Energy Change, ΔG° , and the Equilibrium Constant	63
PANEL 2-1	Chemical Bonds and Groups Commonly Encountered in Biological Molecules	90
PANEL 2-2	Water and Its Influence on the Behavior of Biological Molecules	92
PANEL 2-3	The Principal Types of Weak Noncovalent Bonds that Hold Macromolecules Together	94
PANEL 2-4	An Outline of Some of the Types of Sugars Commonly Found in Cells	96
PANEL 2-5	Fatty Acids and Other Lipids	98
PANEL 2-6	A Survey of the Nucleotides	100
PANEL 2-7	Free Energy and Biological Reactions	102
PANEL 2-8	Details of the 10 Steps of Glycolysis	104
PANEL 2-9	The Complete Citric Acid Cycle	106
PANEL 3-1	The 20 Amino Acids Found in Proteins	112
TABLE 3-3	Some Molecules Covalently Attached to Proteins Regulate Protein Function	165
TABLE 4-1	Some Vital Statistics for the Human Genome	184
TABLE 5-4	Three Major Classes of Transposable Elements	288
TABLE 6-1	Principal Types of RNAs Produced in Cells	305
PANEL 7-1	Common Structural Motifs in Transcription Regulators	376
PANEL 8-1	DNA Sequencing Methods	478
PANEL 8-2	Review of Classical Genetics	486
TABLE 11-1	A Comparison of Inorganic Ion Concentrations Inside and Outside a Typical Mammalian Cell	598
PANEL 11-1	The Derivation of the Nernst Equation	616
TABLE 12-1	Relative Volumes Occupied by the Major Intracellular Compartments in a Liver Cell (Hepatocyte)	643
PANEL 14-1	Redox Potentials	765
TABLE 14-1	Product Yields from the Oxidation of Sugars and Fats	775
TABLE 15-3	Four Major Families of Trimeric G Proteins	846
TABLE 15-4	Some Signal Proteins That Act Via RTKs	850
TABLE 15-5	The Ras Superfamily of Monomeric GTPases	854
TABLE 15-6	Some Extracellular Signal Proteins That Act Through Cytokine Receptors and the JAK-STAT Signaling Pathway	864
PANEL 16-2	The Polymerization of Actin and Tubulin	902
TABLE 16-1	Chemical Inhibitors of Actin and Microtubules	904
PANEL 16-3	Actin Filaments	905
PANEL 16-4	Microtubules	933
TABLE 16-2	Major Types of Intermediate Filament Proteins in Vertebrate Cells	944
TABLE 17-1	The Major Cyclins and Cdks of Vertebrates and Budding Yeast	969
TABLE 17-2	Summary of the Major Cell Cycle Regulatory Proteins	973
PANEL 17-1	The Principle Stages of M Phase (Mitosis and Cytokinesis) in an Animal Cell	980
TABLE 19-1	Anchoring Junctions	1037
TABLE 19-2	Some Types of Collagen and Their Properties	1063
TABLE 19-3	Some Types of Integrins	1076
TABLE 22-1	Blood Cells	1241
TABLE 24-2	Properties of the Major Classes of Antibodies in Humans	1318
TABLE 24-3	Properties of Human Class I and Class II MHC Proteins	1330

Detailed Contents

Chapter 1 Cells and Genomes	1	The Frog and the Zebrafish Provide Accessible Models for	0.1
THE UNIVERSAL FEATURES OF CELLS ON EARTH	2	Vertebrate Development	35
All Cells Store Their Hereditary Information in the Same Linear	_	The Mouse Is the Predominant Mammalian Model Organism	35
Chemical Code: DNA	2	Humans Report on Their Own Peculiarities	36
All Cells Replicate Their Hereditary Information by Templated	_	We Are All Different in Detail	38
Polymerization	3	To Understand Cells and Organisms Will Require Mathematics,	38
All Cells Transcribe Portions of Their Hereditary Information into	O	Computers, and Quantitative Information	39
the Same Intermediary Form: RNA	4	Summary Problems	39
All Cells Use Proteins as Catalysts	5	References	4
All Cells Translate RNA into Protein in the Same Way	6	1 16161611063	4
Each Protein Is Encoded by a Specific Gene	7	Chapter 2 Cell Chemistry and Ricenergeties	43
Life Requires Free Energy	8	Chapter 2 Cell Chemistry and Bioenergetics	40
All Cells Function as Biochemical Factories Dealing with the Same	O	THE CHEMICAL COMPONENTS OF A CELL	43
Basic Molecular Building Blocks	8	Water Is Held Together by Hydrogen Bonds	44
All Cells Are Enclosed in a Plasma Membrane Across Which	O	Four Types of Noncovalent Attractions Help Bring Molecules	
Nutrients and Waste Materials Must Pass	8	Together in Cells	44
A Living Cell Can Exist with Fewer Than 500 Genes	9	Some Polar Molecules Form Acids and Bases in Water	45
Summary	10	A Cell Is Formed from Carbon Compounds	47
		Cells Contain Four Major Families of Small Organic Molecules	47
THE DIVERSITY OF GENOMES AND THE TREE OF LIFE	10	The Chemistry of Cells Is Dominated by Macromolecules with	
Cells Can Be Powered by a Variety of Free-Energy Sources	10	Remarkable Properties	47
Some Cells Fix Nitrogen and Carbon Dioxide for Others	12	Noncovalent Bonds Specify Both the Precise Shape of a	4.0
The Greatest Biochemical Diversity Exists Among Prokaryotic Cells	12	Macromolecule and Its Binding to Other Molecules	49
The Tree of Life Has Three Primary Branches: Bacteria, Archaea,	1.1	Summary	50
and Eukaryotes	14	CATALYSIS AND THE USE OF ENERGY BY CELLS	5
Some Genes Evolve Rapidly; Others Are Highly Conserved	15	Cell Metabolism Is Organized by Enzymes	5
Most Bacteria and Archaea Have 1000–6000 Genes	16	Biological Order Is Made Possible by the Release of Heat Energy	_
New Genes Are Generated from Preexisting Genes	16	from Cells	52
Gene Duplications Give Rise to Families of Related Genes Within	17	Cells Obtain Energy by the Oxidation of Organic Molecules	54
a Single Cell Genes Can Be Transferred Between Organisms, Both in the	17	Oxidation and Reduction Involve Electron Transfers	58
g ·	10	Enzymes Lower the Activation-Energy Barriers That Block	
Laboratory and in Nature	18	Chemical Reactions Fortymen Con Prive Substrate Melecules Along Specific Reaction	57
Sex Results in Horizontal Exchanges of Genetic Information	19	Enzymes Can Drive Substrate Molecules Along Specific Reaction Pathways	58
Within a Species The Function of a Gene Can Often Be Deduced from Its Sequence	20	How Enzymes Find Their Substrates: The Enormous Rapidity of	00
More Than 200 Gene Families Are Common to All Three Primary	20	Molecular Motions	59
Branches of the Tree of Life	20	The Free-Energy Change for a Reaction, ΔG , Determines Whether	•
Mutations Reveal the Functions of Genes	21	It Can Occur Spontaneously	60
Molecular Biology Began with a Spotlight on E. coli	22	The Concentration of Reactants Influences the Free-Energy	
Summary	22	Change and a Reaction's Direction	6
•		The Standard Free-Energy Change, ΔG° , Makes It Possible	
GENETIC INFORMATION IN EUKARYOTES	23	to Compare the Energetics of Different Reactions	6
Eukaryotic Cells May Have Originated as Predators	24	The Equilibrium Constant and ΔG° Are Readily Derived from	
Modern Eukaryotic Cells Evolved from a Symbiosis	25	Each Other	62
Eukaryotes Have Hybrid Genomes	27 28	The Free-Energy Changes of Coupled Reactions Are Additive	60
Eukaryotic Genomes Are Bigh in Regulatory DNA	29	Activated Carrier Molecules Are Essential for Biosynthesis	60
Eukaryotic Genomes Are Rich in Regulatory DNA The Genome Defines the Program of Multicellular Development	29	The Formation of an Activated Carrier Is Coupled to an	0
Many Eukaryotes Live as Solitary Cells	30	Energetically Favorable Reaction	64
A Yeast Serves as a Minimal Model Eukaryote	30	ATP Is the Most Widely Used Activated Carrier Molecule Energy Stored in ATP Is Often Harnessed to Join Two Molecules	68
The Expression Levels of All the Genes of An Organism	50	Together	65
Can Be Monitored Simultaneously	32	NADH and NADPH Are Important Electron Carriers	67
Arabidopsis Has Been Chosen Out of 300,000 Species	02	There Are Many Other Activated Carrier Molecules in Cells	68
As a Model Plant	32	The Synthesis of Biological Polymers Is Driven by ATP Hydrolysis	70
The World of Animal Cells Is Represented By a Worm, a Fly,	02	Summary	73
a Fish, a Mouse, and a Human	33	HOW CELLS OBTAIN ENERGY FROM FOOD	73
Studies in <i>Drosophila</i> Provide a Key to Vertebrate Development	33	Glycolysis Is a Central ATP-Producing Pathway	74
The Vertebrate Genome Is a Product of Repeated Duplications	34	Fermentations Produce ATP in the Absence of Oxygen	7!

xxii DETAILED CONTENTS

Glycolysis Illustrates How Enzymes Couple Oxidation to Energy	=-	The Regulation of the Src Protein Kinase Reveals How a Protein	
Storage	76 70	Can Function as a Microprocessor	155
Organisms Store Food Molecules in Special Reservoirs Most Animal Cells Derive Their Energy from Fatty Acids Between	78	Proteins That Bind and Hydrolyze GTP Are Ubiquitous Cell Regulators	156
Meals	81	Regulatory Proteins GAP and GEF Control the Activity of GTP-	100
Sugars and Fats Are Both Degraded to Acetyl CoA in Mitochondria		Binding Proteins by Determining Whether GTP or GDP	
The Citric Acid Cycle Generates NADH by Oxidizing Acetyl		Is Bound	157
Groups to CO ₂	82	Proteins Can Be Regulated by the Covalent Addition of Other	
Electron Transport Drives the Synthesis of the Majority of the ATP		Proteins	157
in Most Cells	84	An Elaborate Ubiquitin-Conjugating System Is Used to Mark	
Amino Acids and Nucleotides Are Part of the Nitrogen Cycle	85	Proteins	158
Metabolism Is Highly Organized and Regulated	87	Protein Complexes with Interchangeable Parts Make Efficient	4.50
Summary Problems	88 88	Use of Genetic Information	159
References	108	A GTP-Binding Protein Shows How Large Protein Movements	160
Tioloronoos	100	Can Be Generated Motor Proteins Produce Large Movements in Cells	161
Chantar 2 Protains	100	Membrane-Bound Transporters Harness Energy to Pump	101
Chapter 3 Proteins	109	Molecules Through Membranes	163
THE SHAPE AND STRUCTURE OF PROTEINS	109	Proteins Often Form Large Complexes That Function as Protein	
The Shape of a Protein Is Specified by Its Amino Acid Sequence	109	Machines	164
Proteins Fold into a Conformation of Lowest Energy	114	Scaffolds Concentrate Sets of Interacting Proteins	164
The α Helix and the β Sheet Are Common Folding Patterns	115	Many Proteins Are Controlled by Covalent Modifications That	
Protein Domains Are Modular Units from Which Larger Proteins	4.47	Direct Them to Specific Sites Inside the Cell	165
Are Built	117	A Complex Network of Protein Interactions Underlies Cell Function	166
Few of the Many Possible Polypeptide Chains Will Be Useful	110	Summary	169
to Cells Proteins Can Be Classified into Many Families	118 119	Problems	170
Some Protein Domains Are Found in Many Different Proteins	121	References	172
Certain Pairs of Domains Are Found Together in Many Proteins	122		
The Human Genome Encodes a Complex Set of Proteins,		Chapter 4 DNA, Chromosomes, and Genomes	173
Revealing That Much Remains Unknown	122	THE STRUCTURE AND FUNCTION OF DNA	173
Larger Protein Molecules Often Contain More Than One		A DNA Molecule Consists of Two Complementary Chains of	170
Polypeptide Chain	123	Nucleotides	175
Some Globular Proteins Form Long Helical Filaments	123	The Structure of DNA Provides a Mechanism for Heredity	177
Many Protein Molecules Have Elongated, Fibrous Shapes	124	In Eukaryotes, DNA Is Enclosed in a Cell Nucleus	178
Proteins Contain a Surprisingly Large Amount of Intrinsically		Summary	179
Disordered Polypeptide Chain	125	CHROMOSOMAL DNA AND ITS PACKAGING IN THE	
Covalent Cross-Linkages Stabilize Extracellular Proteins	127	CHROMOSOMAL DIVA AND ITS PACKAGING IN THE CHROMATIN FIBER	179
Protein Molecules Often Serve as Subunits for the Assembly	107	Eukaryotic DNA Is Packaged into a Set of Chromosomes	180
of Large Structures Many Structures in Cells Are Capable of Self-Assembly	127 128	Chromosomes Contain Long Strings of Genes	182
Assembly Factors Often Aid the Formation of Complex Biological	120	The Nucleotide Sequence of the Human Genome Shows How	102
Structures	130	Our Genes Are Arranged	183
Amyloid Fibrils Can Form from Many Proteins	130	Each DNA Molecule That Forms a Linear Chromosome Must	
Amyloid Structures Can Perform Useful Functions in Cells	132	Contain a Centromere, Two Telomeres, and Replication	
Many Proteins Contain Low-complexity Domains that Can Form		Origins	185
"Reversible Amyloids"	132	DNA Molecules Are Highly Condensed in Chromosomes	187
Summary	134	Nucleosomes Are a Basic Unit of Eukaryotic Chromosome	
PROTEIN FUNCTION	134	Structure	187
All Proteins Bind to Other Molecules	134	The Structure of the Nucleosome Core Particle Reveals How	
The Surface Conformation of a Protein Determines Its Chemistry	135	DNA Is Packaged	188
Sequence Comparisons Between Protein Family Members		Nucleosomes Have a Dynamic Structure, and Are Frequently	
Highlight Crucial Ligand-Binding Sites	136	Subjected to Changes Catalyzed by ATP-Dependent	
Proteins Bind to Other Proteins Through Several Types of		Chromatin Remodeling Complexes	190
Interfaces	137	Nucleosomes Are Usually Packed Together into a Compact	
Antibody Binding Sites Are Especially Versatile	138	Chromatin Fiber	191
The Equilibrium Constant Measures Binding Strength	138	Summary	193
Enzymes Are Powerful and Highly Specific Catalysts	140	CHROMATIN STRUCTURE AND FUNCTION	194
Substrate Binding Is the First Step in Enzyme Catalysis	141	Heterochromatin Is Highly Organized and Restricts Gene	
Enzymes Speed Reactions by Selectively Stabilizing Transition States	141	Expression	194
Enzymes Can Use Simultaneous Acid and Base Catalysis	144	The Heterochromatic State Is Self-Propagating	194
Lysozyme Illustrates How an Enzyme Works	144	The Core Histones Are Covalently Modified at Many Different Sites	196
Tightly Bound Small Molecules Add Extra Functions to Proteins	146	Chromatin Acquires Additional Variety Through the Site-Specific	
Multienzyme Complexes Help to Increase the Rate of Cell		Insertion of a Small Set of Histone Variants	198
Metabolism	148	Covalent Modifications and Histone Variants Act in Concert to	400
The Cell Regulates the Catalytic Activities of Its Enzymes	149	Control Chromosome Functions	198
Allosteric Enzymes Have Two or More Binding Sites That Interact	151	A Complex of Reader and Writer Proteins Can Spread Specific	100
Two Ligands Whose Binding Sites Are Coupled Must Reciprocally	:	Chromatin Modifications Along a Chromosome	199
Affect Each Other's Binding	151	Barrier DNA Sequences Block the Spread of Reader–Writer	
Symmetric Protein Assemblies Produce Cooperative Allosteric	150	Complexes and thereby Separate Neighboring Chromatin	200
Transitions Many Changes in Proteins Are Driven by Protein Phoenhorylation	152	Domains The Chromatin in Centromeres Reveals How Histone Variants	202
Many Changes in Proteins Are Driven by Protein Phosphorylation A Eukaryotic Cell Contains a Large Collection of Protein Kinases	153	Can Create Special Structures	203
and Protein Phosphatases	154	Some Chromatin Structures Can Be Directly Inherited	204

DETAILED CONTENTS xxiii

Experiments with Frog Embryos Suggest that both Activating		The Proteins at a Replication Fork Cooperate to Form a	
and Repressive Chromatin Structures Can Be Inherited	005	Replication Machine	249
Epigenetically Chromatin Structures Are Important for Eukaryotic Chromosome	205	A Strand-Directed Mismatch Repair System Removes Replication Errors That Escape from the Replication Machine	250
Function	206	DNA Topoisomerases Prevent DNA Tangling During Replication	251
Summary	207	DNA Replication Is Fundamentally Similar in Eukaryotes and	
THE GLOBAL STRUCTURE OF CHROMOSOMES	207	Bacteria	253
Chromosomes Are Folded into Large Loops of Chromatin	207	Summary	254
Polytene Chromosomes Are Uniquely Useful for Visualizing		THE INITIATION AND COMPLETION OF DNA REPLICATION	
Chromatin Structures There Are Multiple Forms of Chromatin	208 210	IN CHROMOSOMES DNA Synthesis Begins at Replication Origins	25 4
Chromatin Loops Decondense When the Genes Within Them	210	Bacterial Chromosomes Typically Have a Single Origin of DNA	254
Are Expressed	211	Replication	255
Chromatin Can Move to Specific Sites Within the Nucleus to		Eukaryotic Chromosomes Contain Multiple Origins of Replication	256
Alter Gene Expression	212	In Eukaryotes, DNA Replication Takes Place During Only One	
Networks of Macromolecules Form a Set of Distinct Biochemical Environments inside the Nucleus	213	Part of the Cell Cycle Different Regions on the Same Chromosome Replicate at Distinct	258
Mitotic Chromosomes Are Especially Highly Condensed	214	Times in S Phase	258
Summary	216	A Large Multisubunit Complex Binds to Eukaryotic Origins of	
HOW GENOMES EVOLVE	216	Replication	259
Genome Comparisons Reveal Functional DNA Sequences by		Features of the Human Genome That Specify Origins of	000
their Conservation Throughout Evolution	217	Replication Remain to Be Discovered New Nucleosomes Are Assembled Behind the Replication Fork	260 261
Genome Alterations Are Caused by Failures of the Normal		Telomerase Replicates the Ends of Chromosomes	262
Mechanisms for Copying and Maintaining DNA, as well as by Transposable DNA Elements	217	Telomeres Are Packaged Into Specialized Structures That	
The Genome Sequences of Two Species Differ in Proportion to	211	Protect the Ends of Chromosomes	263
the Length of Time Since They Have Separately Evolved	218	Telomere Length Is Regulated by Cells and Organisms	264
Phylogenetic Trees Constructed from a Comparison of DNA		Summary	265
Sequences Trace the Relationships of All Organisms	219	DNA REPAIR Without DNA Papair Spantaneous DNA Damage Would Papidly	266
A Comparison of Human and Mouse Chromosomes Shows How the Structures of Genomes Diverge	221	Without DNA Repair, Spontaneous DNA Damage Would Rapidly Change DNA Sequences	267
The Size of a Vertebrate Genome Reflects the Relative Rates	221	The DNA Double Helix Is Readily Repaired	268
of DNA Addition and DNA Loss in a Lineage	222	DNA Damage Can Be Removed by More Than One Pathway	269
We Can Infer the Sequence of Some Ancient Genomes	223	Coupling Nucleotide Excision Repair to Transcription Ensures	074
Multispecies Sequence Comparisons Identify Conserved DNA Sequences of Unknown Function	224	That the Cell's Most Important DNA Is Efficiently Repaired The Chemistry of the DNA Bases Facilitates Damage Detection	271 271
Changes in Previously Conserved Sequences Can Help	224	Special Translesion DNA Polymerases Are Used in Emergencies	273
Decipher Critical Steps in Evolution	226	Double-Strand Breaks Are Efficiently Repaired	273
Mutations in the DNA Sequences That Control Gene Expression		DNA Damage Delays Progression of the Cell Cycle	276
Have Driven Many of the Evolutionary Changes in Vertebrates	227	Summary	276
Gene Duplication Also Provides an Important Source of Genetic Novelty During Evolution	227	HOMOLOGOUS RECOMBINATION	276
Duplicated Genes Diverge	228	Homologous Recombination Has Common Features in All Cells DNA Base-Pairing Guides Homologous Recombination	277 277
The Evolution of the Globin Gene Family Shows How DNA		Homologous Recombination Can Flawlessly Repair Double-	211
Duplications Contribute to the Evolution of Organisms	229	Strand Breaks in DNA	278
Genes Encoding New Proteins Can Be Created by the Recombination of Exons	230	Strand Exchange Is Carried Out by the RecA/Rad51 Protein	279
Neutral Mutations Often Spread to Become Fixed in a Population,	230	Homologous Recombination Can Rescue Broken DNA	000
with a Probability That Depends on Population Size	230	Replication Forks Cells Carefully Regulate the Use of Homologous Recombination	280
A Great Deal Can Be Learned from Analyses of the Variation		in DNA Repair	280
Among Humans	232	Homologous Recombination Is Crucial for Meiosis	282
Summary Problems	234 234	Meiotic Recombination Begins with a Programmed Double-Strand	000
References	236	Break Holliday Junctions Are Formed During Meiosis	282 284
		Homologous Recombination Produces Both Crossovers and	20-
Chapter 5 DNA Replication, Repair, and		Non-Crossovers During Meiosis	284
Recombination	237	Homologous Recombination Often Results in Gene Conversion	286
THE MAINTENANCE OF DNA SEQUENCES	237	Summary	286
Mutation Rates Are Extremely Low	237	TRANSPOSITION AND CONSERVATIVE SITE-SPECIFIC RECOMBINATION	287
Low Mutation Rates Are Necessary for Life as We Know It	238	Through Transposition, Mobile Genetic Elements Can Insert	201
Summary	239	Into Any DNA Sequence	288
DNA REPLICATION MECHANISMS	239	DNA-Only Transposons Can Move by a Cut-and-Paste	
Base-Pairing Underlies DNA Replication and DNA Repair	239	Mechanism	288
The DNA Replication Fork Is Asymmetrical The High Fidelity of DNA Replication Requires Several	240	Some Viruses Use a Transposition Mechanism to Move Themselves Into Host-Cell Chromosomes	290
Proofreading Mechanisms	242	Retroviral-like Retrotransposons Resemble Retroviruses, but	230
Only DNA Replication in the 5'-to-3' Direction Allows Efficient		Lack a Protein Coat	291
Error Correction	244	A Large Fraction of the Human Genome Is Composed of	
A Special Nucleotide-Polymerizing Enzyme Synthesizes Short RNA Primer Molecules on the Lagging Strand	245	Nonretroviral Retrotransposons Different Transposable Floments Predominate in Different	291
Special Proteins Help to Open Up the DNA Double Helix in Front	۷40	Different Transposable Elements Predominate in Different Organisms	292
of the Replication Fork	246	Genome Sequences Reveal the Approximate Times at Which	_02
A Sliding Ring Holds a Moving DNA Polymerase Onto the DNA	246	Transposable Elements Have Moved	292

xxiv

DETAILED CONTENTS xxv

MOLECULAR GENETIC MECHANISMS THAT CREATE AND		Hybridoma Cell Lines Are Factories That Produce Monoclonal	
MAINTAIN SPECIALIZED CELL TYPES	392	Antibodies	444
Complex Genetic Switches That Regulate Drosophila	000	Summary	44
Development Are Built Up from Smaller Molecules The Procential Fire Cope la Regulated by Combinatorial Controls	392 394	PURIFYING PROTEINS	445
The Drosophila Eve Gene Is Regulated by Combinatorial Controls Transcription Regulators Are Brought Into Play by Extracellular	394	Cells Can Be Separated into Their Component Fractions	445
Signals	395	Cell Extracts Provide Accessible Systems to Study Cell Functions	447
Combinatorial Gene Control Creates Many Different Cell Types	396	Proteins Can Be Separated by Chromatography Immunoprecipitation Is a Rapid Affinity Purification Method	448
Specialized Cell Types Can Be Experimentally Reprogrammed		Genetically Engineered Tags Provide an Easy Way to Purify	770
to Become Pluripotent Stem Cells	398	Proteins	450
Combinations of Master Transcription Regulators Specify Cell	000	Purified Cell-free Systems Are Required for the Precise	
Types by Controlling the Expression of Many Genes	398	Dissection of Molecular Functions	45
Specialized Cells Must Rapidly Turn Sets of Genes On and Off Differentiated Cells Maintain Their Identity	399 400	Summary	45
Transcription Circuits Allow the Cell to Carry Out Logic Operations	402	ANALYZING PROTEINS	452
Summary	404	Proteins Can Be Separated by SDS Polyacrylamide-Gel	4.5
MECHANISMS THAT REINFORCE CELL MEMORY IN		Electrophoresis Two-Dimensional Gel Electrophoresis Provides Greater Protein	452
PLANTS AND ANIMALS	404	Separation	452
Patterns of DNA Methylation Can Be Inherited When Vertebrate		Specific Proteins Can Be Detected by Blotting with Antibodies	454
Cells Divide	404	Hydrodynamic Measurements Reveal the Size and Shape of	
CG-Rich Islands Are Associated with Many Genes in Mammals Genomic Imprinting Is Based on DNA Methylation	405 407	a Protein Complex	45
Chromosome-Wide Alterations in Chromatin Structure Can Be	401	Mass Spectrometry Provides a Highly Sensitive Method for	
Inherited	409	Identifying Unknown Proteins	45
Epigenetic Mechanisms Ensure That Stable Patterns of Gene		Sets of Interacting Proteins Can Be Identified by Biochemical Methods	45
Expression Can Be Transmitted to Daughter Cells	411	Optical Methods Can Monitor Protein Interactions	458
Summary	413	Protein Function Can Be Selectively Disrupted With Small	
POST-TRANSCRIPTIONAL CONTROLS Transcription Attenuation Causes the Premature Termination of	413	Molecules	459
Some RNA Molecules	414	Protein Structure Can Be Determined Using X-Ray Diffraction	460
Riboswitches Probably Represent Ancient Forms of Gene Control	414	NMR Can Be Used to Determine Protein Structure in Solution	46
Alternative RNA Splicing Can Produce Different Forms of a Protein		Protein Sequence and Structure Provide Clues About Protein Function	462
from the Same Gene	415	Summary	460
The Definition of a Gene Has Been Modified Since the Discovery	440	ANALYZING AND MANIPULATING DNA	460
of Alternative RNA Splicing A Change in the Site of RNA Transcript Cleavage and Poly-A	416	Restriction Nucleases Cut Large DNA Molecules into Specific	700
Addition Can Change the C-terminus of a Protein	417	Fragments	464
RNA Editing Can Change the Meaning of the RNA Message	418	Gel Electrophoresis Separates DNA Molecules of Different Sizes	46
RNA Transport from the Nucleus Can Be Regulated	419	Purified DNA Molecules Can Be Specifically Labeled with	40
Some mRNAs Are Localized to Specific Regions of the Cytosol	421	Radioisotopes or Chemical Markers in vitro	46
The 5' and 3' Untranslated Regions of mRNAs Control Their Translation	422	Genes Can Be Cloned Using Bacteria An Entire Genome Can Be Represented in a DNA Library	469
The Phosphorylation of an Initiation Factor Regulates Protein	722	Genomic and cDNA Libraries Have Different Advantages and	700
Synthesis Globally	423	Drawbacks	47
Initiation at AUG Codons Upstream of the Translation Start Can		Hybridization Provides a Powerful, But Simple Way to Detect	
Regulate Eukaryotic Translation Initiation	424	Specific Nucleotide Sequences	472
Internal Ribosome Entry Sites Provide Opportunities for Translational Control	425	Genes Can Be Cloned <i>in vitro</i> Using PCR PCR Is Also Used for Diagnostic and Forensic Applications	473 474
Changes in mRNA Stability Can Regulate Gene Expression	426	Both DNA and RNA Can Be Rapidly Sequenced	47
Regulation of mRNA Stability Involves P-bodies and Stress		To Be Useful, Genome Sequences Must Be Annotated	47
Granules	427	DNA Cloning Allows Any Protein to be Produced in Large	
Summary	428	Amounts	483
REGULATION OF GENE EXPRESSION BY NONCODING RNAS	429	Summary	484
Small Noncoding RNA Transcripts Regulate Many Animal and Plant Genes Through RNA Interference	429	STUDYING GENE EXPRESSION AND FUNCTION	48
miRNAs Regulate mRNA Translation and Stability	429	Classical Genetics Begins by Disrupting a Cell Process by Random Mutagenesis	48
RNA Interference Is Also Used as a Cell Defense Mechanism	431	Genetic Screens Identify Mutants with Specific Abnormalities	488
RNA Interference Can Direct Heterochromatin Formation	432	Mutations Can Cause Loss or Gain of Protein Function	489
piRNAs Protect the Germ Line from Transposable Elements	433	Complementation Tests Reveal Whether Two Mutations Are in the	
RNA Interference Has Become a Powerful Experimental Tool Bacteria Use Small Noncoding RNAs to Protect Themselves	433	Same Gene or Different Genes	490
from Viruses	433	Gene Products Can Be Ordered in Pathways by Epistasis	400
Long Noncoding RNAs Have Diverse Functions in the Cell	435	Analysis Mutations Responsible for a Phenotype Can Be Identified	490
Summary	436	Through DNA Analysis	49
Problems	436	Rapid and Cheap DNA Sequencing Has Revolutionized	
References	438	Human Genetic Studies	49
Observa O Arabaira Oalla Malaculas and		Linked Blocks of Polymorphisms Have Been Passed Down	400
Chapter 8 Analyzing Cells, Molecules, and	400	from Our Ancestors Polymorphisms Can Aid the Search for Mutations Associated	492
Systems	439	with Disease	493
ISOLATING CELLS AND GROWING THEM IN CULTURE	440	Genomics Is Accelerating the Discovery of Rare Mutations That	
Cells Can Be Isolated from Tissues	440	Predispose Us to Serious Disease	493
Cells Can Be Grown in Culture	440	Reverse Genetics Begins with a Known Gene and Determines	40
Eukaryotic Cell Lines Are a Widely Used Source of	442	Which Cell Processes Require Its Function Animals and Plants Can Be Genetically Altered	494 494
Homogeneous Cells	444	Annual and Fiants out be densitedly Altered	+30

xxvi

The Bacterial CRISPR System Has Been Adapted to Edit Genomes in a Wide Variety of Species	497	Superresolution Fluorescence Techniques Can Overcome Diffraction-Limited Resolution	549
Large Collections of Engineered Mutations Provide a Tool for Examining the Function of Every Gene in an Organism	498	Superresolution Can Also be Achieved Using Single-Molecule Localization Methods	551
RNA Interference Is a Simple and Rapid Way to Test Gene		Summary	554
Function Reporter Genes Reveal When and Where a Gene Is Expressed	499 501	LOOKING AT CELLS AND MOLECULES IN THE ELECTRON MICROSCOPE	554
In situ Hybridization Can Reveal the Location of mRNAs and Noncoding RNAs	502	The Electron Microscope Resolves the Fine Structure of the Cell Biological Specimens Require Special Preparation for Electron	554
Expression of Individual Genes Can Be Measured Using Quantitative RT-PCR	502	Microscopy	555
Analysis of mRNAs by Microarray or RNA-seq Provides a	002	Specific Macromolecules Can Be Localized by Immunogold Electron Microscopy	556
Snapshot of Gene Expression	503	Different Views of a Single Object Can Be Combined to Give	
Genome-wide Chromatin Immunoprecipitation Identifies Sites on the Genome Occupied by Transcription Regulators	505	a Three-Dimensional Reconstruction Images of Surfaces Can Be Obtained by Scanning Electron	557
Ribosome Profiling Reveals Which mRNAs Are Being Translated		Microscopy	558
in the Cell Recombinant DNA Methods Have Revolutionized Human Health	505 506	Negative Staining and Cryoelectron Microscopy Both Allow	550
Transgenic Plants Are Important for Agriculture	507	Macromolecules to Be Viewed at High Resolution Multiple Images Can Be Combined to Increase Resolution	559 561
Summary	508	Summary	562
MATHEMATICAL ANALYSIS OF CELL FUNCTIONS	509	Problems	563
Regulatory Networks Depend on Molecular Interactions Differential Equations Help Us Predict Transient Behavior	509 512	References	564
Both Promoter Activity and Protein Degradation Affect the Rate	012	Chapter 10 Membrane Structure	565
of Change of Protein Concentration	513		
The Time Required to Reach Steady State Depends on Protein Lifetime	514	THE LIPID BILAYER Phosphoglycerides, Sphingolipids, and Sterols Are the Major	566
Quantitative Methods Are Similar for Transcription Repressors		Lipids in Cell Membranes	566
and Activators	514	Phospholipids Spontaneously Form Bilayers	568
Negative Feedback Is a Powerful Strategy in Cell Regulation Delayed Negative Feedback Can Induce Oscillations	515 516	The Lipid Bilayer Is a Two-dimensional Fluid The Fluidity of a Lipid Bilayer Depends on Its Composition	569 571
DNA Binding By a Repressor or an Activator Can Be Cooperative	516	Despite Their Fluidity, Lipid Bilayers Can Form Domains of	57 1
Positive Feedback Is Important for Switchlike Responses		Different Compositions	572
and Bistability	518	Lipid Droplets Are Surrounded by a Phospholipid Monolayer	573
Robustness Is an Important Characteristic of Biological Networks Two Transcription Regulators That Bind to the Same Gene	520	The Asymmetry of the Lipid Bilayer Is Functionally Important Glycolipids Are Found on the Surface of All Eukaryotic Plasma	573
Promoter Can Exert Combinatorial Control	520	Membranes	575
An Incoherent Feed-forward Interaction Generates Pulses	522	Summary	576
A Coherent Feed-forward Interaction Detects Persistent Inputs The Same Network Can Behave Differently in Different Cells Due	522	MEMBRANE PROTEINS Membrane Proteins Can Be Associated with the Linid Bilayer	576
to Stochastic Effects	523	Membrane Proteins Can Be Associated with the Lipid Bilayer in Various Ways	576
Several Computational Approaches Can Be Used to Model the	504	Lipid Anchors Control the Membrane Localization of Some	
Reactions in Cells Statistical Methods Are Critical For the Analysis of Biological Data	524 524	Signaling Proteins In Most Transmembrane Proteins, the Polypeptide Chain	577
Summary	525	Crosses the Lipid Bilayer in an α-Helical Conformation	579
Problems	525	Transmembrane α Helices Often Interact with One Another	580
References	528	Some β Barrels Form Large Channels Many Membrane Proteins Are Glycosylated	580 582
Chapter 9 Visualizing Cells	529	Membrane Proteins Can Be Solubilized and Purified in Detergents	583
	329	Bacteriorhodopsin Is a Light-driven Proton (H+) Pump That	
LOOKING AT CELLS IN THE LIGHT MICROSCOPE	529	Traverses the Lipid Bilayer as Seven α Helices	586
The Light Microscope Can Resolve Details 0.2 µm Apart Photon Noise Creates Additional Limits to Resolution When	530	Membrane Proteins Often Function as Large Complexes Many Membrane Proteins Diffuse in the Plane of the Membrane	588 588
Light Levels Are Low	532	Cells Can Confine Proteins and Lipids to Specific Domains	
Living Cells Are Seen Clearly in a Phase-Contrast or a		Within a Membrane The Cortical Citaglial ton Citaglian Membranes Mashanias	590
Differential-Interference-Contrast Microscope	533	The Cortical Cytoskeleton Gives Membranes Mechanical Strength and Restricts Membrane Protein Diffusion	591
Images Can Be Enhanced and Analyzed by Digital Techniques Intact Tissues Are Usually Fixed and Sectioned Before Microscopy	534 535	Membrane-bending Proteins Deform Bilayers	593
Specific Molecules Can Be Located in Cells by Fluorescence	000	Summary	594
Microscopy	536	Problems References	595 596
Antibodies Can Be Used to Detect Specific Molecules Imaging of Complex Three-Dimensional Objects Is Possible with	539	Toloronood	000
the Optical Microscope	540	Chapter 11 Membrane Transport of Small Molecule	es
The Confocal Microscope Produces Optical Sections by		and the Electrical Properties of Membranes	597
Excluding Out-of-Focus Light	540	PRINCIPLES OF MEMBRANE TRANSPORT	597
Individual Proteins Can Be Fluorescently Tagged in Living Cells and Organisms	542	Protein-Free Lipid Bilayers Are Impermeable to lons	598
Protein Dynamics Can Be Followed in Living Cells	543	There Are Two Main Classes of Membrane Transport Proteins:	F00
Light-Emitting Indicators Can Measure Rapidly Changing	T 40	Transporters and Channels Active Transport Is Mediated by Transporters Coupled to an	598
Intracellular Ion Concentrations Single Molecules Can Be Visualized by Total Internal Reflection	546	Energy Source	599
Fluorescence Microscopy	547	Summary	600
Individual Molecules Can Be Touched, Imaged, and Moved Using		TRANSPORTERS AND ACTIVE MEMBRANE TRANSPORT	600
Atomic Force Microscopy	548	Active Transport Can Be Driven by Ion-Concentration Gradients	601

DETAILED CONTENTS xxvii

Unionefies the Transcellular Transport of Solutes There Are Three Classes of ATP-Dytwin Pumps AP-type ATPase Pumps Ca ²⁺ into the Sarcoplasmic Retouluri in Muscle Carlos Net 1-K-Pump Establishes Na* and K* Gradients Across the Plasma Membrane ABC Transporters Constitute the Largest Family of Membrane ABC Transporter Constitute the Largest Family of Membrane ABC Transporters Constitute the Largest Family of Membrane ABC Transporter Trough NPCs Can Be Regulated by Controlling Access to the Transport Membrane Previous Desseasembles 507 The Restor Transport Membrane Previous Desseasembles 608 Transport Trough NPCs Can Be Regulated by Controlling Access to the Transport Membrane 609 The Transport Trough NPCs Can Be Regulated by Controlling Access to the Transport Trough Microst And Engineer Previous Desseasembles 609 The Transport Trough NPCs Can Be Regulated by Controlling Access to the Transport Trough Controll	Transporters in the Plasma Membrane Regulate Cytosolic pH	604	Nuclear Import Receptors Bind to Both Nuclear Localization	
There Are Three Classes of AIP-Univen Pumps AP-up ATR-se Pumps Casifi into the Secroplesmon Retroduting in Musclo Colls AP-up ATR-se Pumps Casifi into the Secroplesmon Retroduting in Musclo Colls AP-up ATR-se Pumps Casifi into the Secroplesmon Retroduting in Musclo Colls AP-up ATR-se Pumps Casifi into the Secroplesmon Retroducing ABC Transport Proteins Summany ABC Transport Proteins ABC Transport Transport Transport ABC Transport Proteins ABC Transport Transport ABC Transport Proteins ABC Transport AB	An Asymmetric Distribution of Transporters in Epithelial Cells Linderlies the Transcellular Transport of Solutes	605	Signals and NPC Proteins Nuclear Export Works Like Nuclear Import But in Reverse	652 652
in Muscle Cells Fine Plasma Membrane Na*-K* Pump Establishes Na* and K* Godinter Acrose the Plasma Membrane Na*-K* Pump Establishes Na* and K* Godinter Acrose the Plasma Membrane Na*-K* Godinter Acrose the Plasma Membrane Na*-M* Surrows* Surrows* Chancel State In Anjana Colls Depored Membrane Haspaporias Rea Permeable to Waler But Impermeable to korse In Channels And The ELECTRICAL PROPERTIES OF MEMBRANES Ansatz State In Anjana Colls Depored Membrane Haspaporias Rea Permeable to Waler But Impermeable to korse In Ende Channels with the K* Gradient Across the Plasma Membrane Hampton State In Anjana Colls Depored Membrane Hampton In Tension State In Anjana Colls Depored Membrane Hampton In Tension State In Anjana Colls Depored Membrane Hampton In Tension State In Anjana Colls Depored Membrane Hampton In Tension State In Anjana Colls Depored Membrane Hampton In Tension State In Anjana Colls Depored Membrane Hampton In Tension State In Anjana Colls Depored Membrane Hampton In Tension In	There Are Three Classes of ATP-Driven Pumps			
The Plasma Mombrane Nar-K-Y Pump Establishes Nat and K- Gordents Across the Plasma with the Largest Family of Mambrane Transport Proteins Transport Transport Proteins Transport Transport Proteins Transport Transport Proteins Transport Transport Proteins Transport Transport Transport Proteins Transport Tra		606		653
ABC Transporters Constitute the Largest Family of Membrane Transport Proteins Summary ABC Transporter Note lists Transport Proteins Summary ABC Transporter Constitute the Largest Family of Membrane Transport Orbeits Summary ABC Transporter Note State Transport Proteins Summary ABC Transporter Constitute the Largest Family of Membrane Proteins ABC Transporter Note State ABC Transporter Or PROTEINS INTO MITOCHONDRIA AND CHICAROPLASTS Transporter Or Proteins Are Imported as Unfolded ABC Channels and the K* Gradient Across the Pleasm Membrane Membrane Membrane Membrane Channels Decorate Or My When the Next-K* Loak Channels Decorate Or My Whe		000		654
Transport Proteins CHANNELS AND THE ELECTRICAL PROPERTIES OF MEMBRANES CHANNELS AND THE ELECTRICAL PROPERTIES OF MEMBRANES Adjustment of the Company of the Channels of the Channels Adjustment of the Channels Channels and the KF candidate Across the Plasma Membrane The Membrane Potential in Animal Calls Deponds Mainly on KF Paint pis Stopped The Resting Potential Decays Only Slowly When the Na*-KF Paint pis Stopped The Resting Potential Decays Only Slowly When the Na*-KF Paint pis Stopped The Temperature of a Bedeteila K* Channel Extreme Osmatic Pressures Membrane The Resting Potential Decays Only Slowly When the Na*-KF Paint pis Stopped The Feeting Potential Decays Only Slowly When the Na*-KF Paint pis Stopped The Feeting Potential Decays Only Slowly When the Na*-KF Paint pis Stopped The Feeting Potential Decays Only Slowly When the Na*-KF Paint pis Stopped The Feeting Potential Decays Only Slowly When the Na*-KF Paint pis Stopped The Feeting Potential Decays Only Slowly When the Na*-KF Paint pis Stopped The Leg of Diament Potential Protection of A Neuron Depends on its Ellongated Structure Stopped Internet Potential Structural Vision of Neuro Colle Population of Neuro College Potentials in Electrically Exotable Colle Population of Neuro College Potentials in Electrolialy Exotable Colle Population of Neuro College Potentials in Electrolialy Exotable College Population Internet Potentials of Neuro College Control Chamical Signals into Electrical Ones at Chamical Syrapses Population Internet Selds of Cort Orbanels Population Internet Selds of Cort Orbanels Population Internet Selds of Cort Orbanels Population Population Population Population Population of Fixed Company of Neurolation Population Population Population of Fixed Company of Neurolation Population Population of Fixed Company of Neurolation Population Population Population Population Population Popul		607	and the second of the second o	
CHANNELS AND THE ELECTRICAL PROPERTIES OF MEMBRANES Appaparis An Permeable to Water But Impermeable to loss for Channels Are Permeable to Water But Impermeable to loss for Channels Are Permeable to Water But Impermeable to loss for Channels Are Permeable to Water But Impermeable to loss for Channels Are Permeable to Water But Impermeable to loss for Channels Are Permeable to Water But Impermeable to loss for Channels Are Permeable to Water But Impermeable to loss for Channels Are Permeable to Water But Impermeable t		609		657
CHANNELS AND THE ELECTRICAL PROPERTIES OF MEMBRANES (ELECTRICAL PROPERTIES OF MEMBRANES LECTRICAL PROPERTIES OF MEMBRANES CHANGES (Channels of the N-Solective and Fluctuate Between Open and Closed States The Membrane Potential in Animal Calls Depends Mainly on K*1 Membrane Potential in Animal Calls Depends Mainly on K*2 Purry Is Stopped The Resimple Properties of the New York Purry Is Stopped The Presimple Properties Channels Protect Bacterial Change (Potential Properties Channels Protect Bacterial Calls Against Extreme Osmatic Pressures The Normal Calls Depends on its Engaged Structure (Schothally Excitable Calls Properties Channels				658
Aquaponirs Âre Permeable to Water But Impormeable to lons Channels And ion-Selective and Hicutaits Battween Open and Closed States The Membrane Potential in Animal Cells Depends Mainty on K' Loak Channels and the K' Caradient Across the Plasma Manthzaria The Membrane Potential Decays Chily Stowly When the Na*-K' Loak Channels and the K' Caradient Across the Plasma Mechanisms to line of the Membrane Potential Decays Chily Stowly When the Na*-K' The Three Offine Potential Decays Chily Stowly When the Na*-K' The Three Offine Potential Structure of a Bacterial K' Channel Shows How an Ion Channel Can Work Mechanisms Channels Channels Caradian Potentials in Electrically Excitation Channels Caradian Channels Car				000
Ion Channels Are Ion-Selective and Fluctuate Between Open and Closed States The Membrane Potential in Animal Cells Depends Mainly on K* Laak Channels and the K* Gradient Across the Pleama Membrane Potential in Animal Cells Depends Mainly on K* Laak Channels and the K* Gradient Across the Pleama Membrane Potential Drivers ("Gradient Pleama Drivers ("Gradient Plea				659
and Closed States The Membrane Potential in Animal Cells Depends Mainly on K* Lesk Channels and the K* Gradient Across the Plasma Membrane The Resting Potential Decays Only Slowly When the Na"-K* The IPS Stopped The Three-Dimensional Structure of a Bacterial K* Channel Shows How and not Channel Can Work Shows How and not Channel Can Work Shows How and not Channel Can Work Lesk Channels Channels Can Work Shows How and not Channel Can Work Lesk Channels Channels Can Work Lesk Channels Channels Channels Channels Departed Can Move Beneate Action Potentials in Electrically Excitable Cells The Use of Channels Andershall Excitation Increases the Speed and Efficiency of Action Potentials In Electrically Excitable Cells Three State of Channels Channels Channels Channels Channel How Called Cells on Channels Channel How Called Cells on Channels Channel Shows How All Channels Channels Channels Are Evolutionarly and Structurally of Channels Channels Shows Research Channels	1 1	012	·	660
Leak Channels and the K* Gradient Across the Piasma Membrane Membrane Membrane 15 Stopped The Riseting Potential Decays Only Slowly When the Na*-K* Pump is Stopped The Three-Dimensional Structure of a Bacterial K* Channel Shows How and in Channel Can Work Mechanosenstive Channels Protect Bacterial Cells Against Mechanosenstive Channels Chan		613		
Membrane The Resting Potential Decays Only Slowly When the Na*-K* Pump is Stopped The Three-Dimensional Structure of a Bacterial K* Channel Shows How an Ion Channel Gan Work Mechanosenstruct Channels Protect Bacterial Cells Against Extreme Carmotic Pressures The Furction of a Neuron Depends on its Elongated Structure Voltage-Gated Calson Channels Cerevate Action Potentials in Bedrically Excitable Cells Propagation in Nerve Cells Patch-Clamp Becording Indicates That Individual on Channels Open in an All-on-Nothing Fashion Voltage-Gated Cathon Channels Are Evolutionary and Structurally Related Claton Channels Are Evolutionary and Structurally Related Different Neuron Types Display Characteristic Stable Firing Properties Transmitter-Gated on Channels Convert Chemical Signals into Electrical Ones at Channels Convert Chemical Signals into Electrical Ones at Channels Convert Chemical Signals into Electrical Ones at Channels Compared to Compared to Compared to Channels Compared to Compared to Compared to Channels Compared to Compared to Compared to Compared to Compared to Compared to Compare	·		·	661
The Resting Potential Decays Only Slowly When the Natification For Jump is Stopped The Three-Dimensional Structure of a Bacterial K* Channel Shows How an Ion Channels General Action Potentials in Extreme Commiss from Eurocia of a Neuron Depends on its Elongated Structure Voltage-Gated Calon Channels Generals Action Potentials in The Lise of Channels Generals Action Potentials in The Lise of Channels Generals Action Potentials in The Lise of Channels Calon Channels Generals Action Potentials in The Lise of Channels Channels Generals Action Potentials in The Lise of Channels Channels Generals Action Potentials in The Lise of Channels Channels Generals Action Potentials in The Lise of Channels Calon Channels Generals Action Potentials in The Lise of Channels Channels Calon Channels Copen in an All-on-Nothing Fashion Mysiliation Indicates That Individual Ion Channels Open in an All-on-Nothing Fashion Voltage-Gated Cation Channels Convert Chemical Signals into Electrical Ones at Chemical Synapses Chemical Synapses Can Be Excitatory or Inhibitory Properties Channels Convert Chemical Signals into Electrical Ones at Chemical Synapses Chemical Synapses Can Be Excitatory or Inhibitory Into Acetylcholine Receptors at the Neurorus Contain Mary Types of Transmitter-Gated Cation Channels All of the Complex Channels Compartments and Protein Sorting Chapter 12 Intracellular Compartments and Protein Sorting Chapter 12 Intracellular Compartments and Protein Sorting Relationships of Organelles Chapter 12 Intracellular Compartments and Protein Sorting Relationships of Organelles Chapter 12 Intracellular Compartments and Protein Sorting Relationships of Organelles Chapter 14 Intracellular Compartments and Protein Sorting Relationships of Organelles Chapter 15 Intracellular Compartments and Protein Sorting Relationships of Organelles Chapter 16 Intracellular Compartments and Protein Sorting Relationships of Organelles Chapter 17 Intracellular Compartments and Protein Sorting Relationships of Organelles Chapter 1		615		662
The Three-Dimensional Structure of a Bacterial K** Channel Shows How an Ion Channel Can Work Mechanosensitive Channels Protect Bacterial Cells Against Extreme Compile Pressures The Function of a Neuron Depends on its Elongated Structure Voltage-Gated Calion Channels Generate Action Potentials in Electrically Excitable Calls The Use of Channels Calls The Use of Channels Calls The Use of Channels Speak and Efficiency of Action Potentials in Electrically Excitable Calls The Use of Channels Calls The Use of Channels Speak and Efficiency of Action Potentials Propagation in News Cells Perceived Calls The Use of Channels Are Evolutionarily and Structurally Propagation in News Cells Perceived Calls The Ca		045	Transport Into the Inner Mitochondrial Membrane and	
Shows How an Ion Channel Can Work Mechanosensitive Channels Profect Bacterial Cells Against Extreme Gemotic Pressures The Function of a Neuron Depends on its Elongated Structure Voltage-Gated Carlion Channels Generate Action Potentials in Electrically Excitable Cells The Use of Channelmodopsins Has Revolutionized the Study of Neural Circuits Myelination Increases the Speed and Efficiency of Action Potential Propagation in Nerve Cells Patch-Clamp Recording Indicates That Individual Ion Channels Open in an Alter-Nothing Fashion Voltage-Gated Catlion Channels Are Evolutionarily and Structurally Related Spen in an Alter-Nothing Fashion Voltage-Gated Catlion Channels Convert Chemical Signals into Electrically Transmitter-Gated Catlion Channels Open in an Alter-Nothing Fashion Voltage-Gated Catlion Channels Convert Chemical Signals into Electrically Transmitter-Gated Catlion Channels Open in an Alter-Nothing Fashion Voltage-Gated Catlion Channels Convert Chemical Signals into Electrically Transmitter-Gated Catlion Channels Channel Transmitter-Gated Catlion Channels Surmany Psychoactive Drugs Act at Syneases Neuroniscular Transmission Involves the Sequential Activation of Five Different Start of Ion Channels Single Neurons Are Complex Computation Devices Neuronal Complex Complex Computation Devices Neuronal Computation Devices Neuronal Computation Devices Neuronal	·	615		663
Mechanosensitive Channels Protect Bacterial Celles Against Extreme Osmotic Pressures 1 Fe Function of a Neuron Depends on its Elongated Structure Voltage-Gated Cation Channels Generate Action Potentials in Eloctrically Excitable Calls The Use of Channels Corporate Proteins and Efficiency of Action Potential Propagation in Nerve Cells Parth-Clamp Becording includes That Individual Ion Channels Open in an Alf-or-Nothing Fashion Voltage-Gated Cation Channels Are Evolutionarily and Structurally Related Different Neuron Types Display Characteristic Stable Firing Properties Transmitter-Gated Ion Channels Are Evolutionarily and Structurally Related Different Neuron Types Display Characteristic Stable Firing Properties Transmitter-Gated Cation Channels Syrageses Can Be Excitatory of Inhibitory The Acetylcholine Receptors at the Neuronuscular Junction Are Excitatory Transmitter-Gated Cation Channels Control Marry Types of Transmitter-Gated Cation Channels C	Shows How an Ion Channel Can Work	617		664
The Function of a Neuron Depends on its Elongated Structure Voltage-Gated Cation Channels Generate Action Potentials in Electrically Exotable Cells The Use of Channelmodopsins Has Revolutionized the Study of Neural Circuits Whyliantion Increases the Speed and Efficiency of Action Potential Propagation in Nerve Cells Application Increases the Speed and Efficiency of Action Potential Propagation in Nerve Cells Open in an All-or-Nothing Fashior Ottage-Gated Cation Channels Are Evolutionarily and Structurally Related Different Neuron Types Display Characteristic Stable Firing Properties Transmitter-Gated Lon Channels Convert Chemical Signals into Electrical Ones at Chemical Synapses Fermiously Synapses Can Be Excitatory or Inhibitory The Acetylcholine Receptors at the Neuromuscular Junction Are Excitatory Transmitter-Gated Cation Channels All Evolutionary Original Proteins of Transmitter-Gated Cotannels Many Psychoacte Drugs Act at Synapses Neuromuscular Transmission Involves the Sequential Activation of Five Different Sets of Ino Channels Singie Neurons Are Complex Computation Devices Singie Neurons Are Complex Computation Devices Singie Neurons Are Complex Computation Devices Singie Neurons Are Complex Computation of at Least Three Kinds of K* Channels Summary Depends on Car* Entry Through NMDA-Receptor Channels Summary Depends on Car* Entry Through NMDA-Receptor Channels All Eukaryotic Cells Have the Same Basic Set of Membrane- enclosed Organelles Chapter 12 Intracellular Compartments and Protein Sorting Relationships of Organelles Federations Chapter 12 Intracellular Compartments and Protein Sorting Relationships of Organelles Federations Chapter 12 Intracellular Compartments and Protein Sorting Relationships of Organelles Federations Chapter 12 Intracellular Compartments and Protein Sorting Relationships of Organelles Federations and Proteins Activate an Unfolded Protein Response References		610	·	666
Voltage-Gated Cation Channels Generate Action Potentials in Electrically Excitable Cells Recording Excitable Cells Revolutionized the Study of Neural Circuits Myelination Increases the Speed and Efficiency of Action Potential Propagation in Nerve Cells Patch-Clamp Recording Indicates That Individual Ion Channels Open in an All-or-Nothing Fashion Voltage-Gated Cation Channels Are Evolutionarily and Structurally Related Different Neuron Types Display Characteristic Stable Firing Properties Transmitter-Gated Ion Channels Convert Chemical Signals into Electrical Ones at Chemical Synapses Chemical Synapses Can Be Excitatory or Inhibitory The Acetylcholine Receptors at the Neuronsucular Junction Are Excitatory Transmitter-Gated Cation Channels Neuron Scottine Propaga Act at Synapses Neuronal Computation Requires a Combination of at Least Three Kinds of K** Channels Long-Term Potentiation (LTP) in the Mammalian Hippocampus Depends on Ca ²⁺ Entry Through NMDA-Receptor Channels Summary Problems References Chapter 12 Intracellular Compartments and Protein Sorting References Chapter 12 Intracellular Compartments and Protein Sorting References Chapter 12 Intracellular Compartments in Different Ways Signal Sequence Precisis the Import of Proteins into Proteins in The Propagation Particle (SRP) Directs the ER Signal Sequences Were First Deported Chain Engagement Propagation Particle (SRP) Directs the ER Signal Sequence for a Specific Receptor in the Rough ER Membrane Proteins Service of Transmitter-Gated Channels Summary Require Ongoing Polypeptide Chain Passes Through an Aqueous Channel In the Translocation Channels (SIGNAIS) Transmitter Gated Chain Engagement Propagation Particle (SRP) Directs the ER Signal Sequences Propagition Particle (SRP) Directs the ER Signal Sequence for a Specific Receptor in the Rough ER Membrane Propagation Particle (SRP) Directs the ER Signal Sequence Propagition Particle (SRP) Directs the ER Signal Sequence Propagition Particle (SRP) Directs the ER Signal Sequence Propagition Particle (SRP)				666
The Use of Channelirodopsins Has Revolutionized the Study of Neural Circuits Wylenation Increases the Speed and Efficiency of Action Potential Propagation in New Cells Parch-Clamp Recording Indicates That Individual Ion Channels Open in an Alt-or-Nothing Fashion Ottogae-Gated Cation Channels Are Evolutionarily and Structurally Related Different Neuron Types Display Characteristic Stable Firing Properties Transmitter-Gated Ion Channels Convert Chemical Signals into Electrical Ones at Chemical Synapses Chemical Synapses Cannels Excitatory or Inhibitory The Acetylcholine Receptors at the Neuromuscular Junction Are Excitatory Transmitter-Gated Cation Channels Convert Channels Chemical Synapses Cannels Excitatory or Inhibitory The Acetylcholine Receptors at the Neuromuscular Junction Are Excitatory Transmitter-Gated Cation Channels Channels Neurons Confain Many Types of Transmitter-Gated Cation Channels Channels Neurons Confain Many Types of Transmiter-Gated Cation Channels Channels Neurons Confain Many Types of Transmiter-Gated Cation Channels Channels Neurons Confain Many Types of Transmiter-Gated Cation Channels Channels Neurons Confain Many Types of Transmiter-Gated Cation Channels Channels Neurons Confain Many Types of Transmiter-Gated Cation Channels	Voltage-Gated Cation Channels Generate Action Potentials in		, , ,	666
of Neural Circuits Myelianation Increases the Speed and Efficiency of Action Potential Propagation in Nerve Cells Propagation in Nerve Cells Apatch-Clamp Recording Indicates That Individual Ion Channels Open in an All-or-Nothing Fashion Voltage-Gated Cation Channels Are Evolutionarily and Structurally Related Different Neuron Types Display Characteristic Stable Fring Properties Transmitter-Gated Cation Channels Convert Chemical Signals into Electrical Ones at Chemical Synapses Chemical Synapses Category Transmitter-Gated Cation Channels Corlemical Synapses Category Transmitter-Gated Cation Channels Corlemical Synapses Category Transmitter-Gated Cation Channels Corlemical Synapses Category Transmitter-Gated Cation Channels Catigory Transmitter-Gated Cation Channels Category Transmitter-Gat		621		000
Propagation in Nerve Cells Patch-Clamp Recording indicates That Individual on Channels Open in an All-or-Nothing Fashion Voltage-Gated Cation Channels Are Evolutionarily and Structurally Related Different Neuron Types Display Characteristic Stable Firing Properties Transmitter-Gated Compartments and Psychoactive Drugs Act at Synapses Neurons Contain Many Types of Transmitter-Gated Channels Neurons Contain Many Types of Transmitter-Gated Channels Of Five Different Sets of Ion Channels Single Neurons Are Complex Computation Devices Neurons Contain Many Types of Transmitter-Gated Channels Of Five Different Sets of Ion Channels Single Neurons Are Complex Computation Devices Neurons Contentiation (LTP) in the Mammalian Hippocampus Depends on Ca ²⁺ Entry Through NMDA-Receptor Channels Surmany Froblems References THE ENDOPLASMIC RETICULUM The ER Is Structurally and Functionally Diverse Signal Sequence Were First Discovered in Proteins Imported into the Rough ER Signal Sequence to a Specific Receptor in the Rough ER Are Regional Sequence to a Specific Receptor in the Rough ER Are Signal Sequence to a Specific Receptor in the Rough ER Are Divided Proteins in the Lipid Bilayer as a Membrane Proteins and Sequence Proteins Act State of Proteins and Agreement Proteins of Translocator Translocated Complex Divided Proteins to the Complex State of Neuronal Activation of Five Different Sets of Ion Channels Single Neurons Are Complex State of Neuronal Activation of Five Different State of Ion Channels Single Neuronal Activation of Start-Transfer and Stop-Transfer Signals Compared to the Rough ER Signal Sequence Remains in the Lipid Bilayer as a Membrane Proteins Signal Sequence Omplex Proteins Are Exported from the ER Membrane Proteins Translocated Organical Proteins State of Proteins Are Exported from the ER and Degraded in the Cupic Response Some Membrane Proteins Are Exported from the ER and Degraded in the Cupic Response Some Membrane Proteins Are Exported from the ER and Degraded in the Cupic Response Some Membrane Protei	·	623	Peroxisomes	
Patch-Clamp Recording Indicates That Individual Ion Channels Open in an All-or-Nothing Fashion Voltage-Gated Cation Channels Are Evolutionarily and Structurally Related Voltage-Gated Cation Channels Are Evolutionarily and Structurally Related Voltage-Gated Cation Channels Are Evolutionarily and Structurally Related Voltage-Gated Cation Channels Convert Chemical Signals into Electrical Ones at Chemical Synapses Chemical Synapses Can Be Excitatory or Inhibitory The Acetylcholine Receptors at the Neuromuscular Junction Are Excitatory Transmitter Gated Cation Channels Neurons Contain Many Types of Transmitter-Gated Channels Neurons Contain Many Types of Transmitter-Gated Channels Neurons Are Complex Act at Synapses Neuromuscular Transmission involves the Sequential Activation of Five Different Sets of Ion Channels Signal Sequences Were First Discovered in Proteins the ER Signal Sequences of a Specific Receptor in the Rough ER Membrane Sequence to a Specific Receptor in the Rough ER Membrane Sequence to a Specific Receptor in the Rough ER Membrane Sequence to a Specific Receptor in the Rough ER Membrane Sequence to a Specific Receptor in the Rough ER Membrane Proteins An Exposphage Chain Passes Through an Aqueous Channel Sequence to a Specific Receptor in the Rough ER Membrane Agency for the Polypeptide Chain Passes Through an Aqueous Channel Sequence to a Specific Receptor in the Rough ER Membrane Proteins An ER Signal Sequence to a Specific Receptor in the Rough ER Membrane Becaute the ER Signal Sequence to a Specific Receptor in the Rough ER Assemble Chain Fasses Through an Aqueous Channel Sequence to a Specific Receptor in the Rough ER Membrane Froteins, as Single Internal ER Signal Sequence Remains in the Lipid Bilayer as a Membrane Signal Sequence Remains in the Lipid Bilayer as a Membrane Proteins Are Integrated into the ER Membrane Signals Sequence Sequential Activation of Start-Transfer and Stop-Transfer Signals Determine the Topology of Multipass Transmembrane Proteins Sequence Sequential Activation of Sta		005		
Open in an All-or-Nothing Fashion Voltage-Gated Cation Channels Are Evolutionarily and Structurally Related Different Neuron Types Display Characteristic Stable Firing Properties Transmitter-Gated Ion Channels Convert Chemical Signals into Electrical Ones at Chemical Synapses Chemical Synapses Can Be Excitatory or Inhibitory The Acetylcholine Receptors at the Neuromuscular Junction Are Excitatory Transmitter-Gated Cation Channels Many Psychoactive Drugs Act at Synapses Neurons Contain Many Types of Transmitter-Gated Channels Many Psychoactive Drugs Act at Synapses Neuronal Computation Involves the Sequential Activation of Five Different Sets of Ion Channels Single Neurons Are Complex Computation Devices Neuronal Computation Requires a Combination of at Least Three Kinds of K* Channels Long-Term Potentiation (LTP) in the Mammalian Hippocampus Depends on Ca ^{2**} Entry Through NMDA-Receptor Channels Surmany Surmany Surmany The CoMPARTMENTALIZATION OF CELLS All Eukaryotic Cells Have the Same Basic Set of Membrane- enclosed Organelies Volutionary Origins May Help Explain the Topological Relationships of Organelies In the Rough ER A Signal Recugnition Particle (SRPD) Directs the ER Signal Sequence to a Specific Receptor in the Rough ER Are Bugbus of The Problems Require Ongoing Polypeptide Chain Elongation In the Transfocator Transmitter-Gated Channels Single Neurons Are Omplexes Problems Assignal Sequence Remains in the Lipid Bilayers as a Membrane- spanning a Helix Combinations of Start-Transfer and Stop-Transfer Signals Complete Chains Fold and Assemble in the Lumen of the Rough ER May Proteins Synthesized in the Rough ER		625		
Fielated Different Neuron Types Display Characteristic Stable Firing Properties Properti		626		010
Different Neuron Types Display Characteristic Stable Firing Properties Transmitter-Gated Ion Channels Convert Chemical Signals into Electrical Ones at Chemical Synapses Chemical Synapses Can Be Excitatory or Inhibitory The Acetylcholine Receptors at the Neuromuscular Junction Are Excitatory Transmitter-Gated Cation Channels Neurons Contain Many Types of Transmitter-Gated Channels Many Psychoactive Drugs Act at Synapses Neuromuscular Transmitson Involves the Sequential Activation of Five Different Sets of Ion Channels Single Neurons Are Complex Computation Devices Neuronal Computation Requires a Combination of at Least Three Kinds of K** Channels Long-Term Potentiation (LTP) in the Mammalian Hippocampus Depends on Ca ²⁺ Entry Through NMDA-Receptor Channels Summany Problems References Chapter 12 Intracellular Compartments and Protein Sorting HE COMPARTMENTALIZATION OF CELLS All Eukaryotic Cells Have the Same Basic Set of Membrane-enclosed Organelles Evolutionary Origins May Help Explain the Topological Relationships of Organelles Evolutionary Origins May Help Explain the Topological Relationships of Organelles Lord Correct Cell Address Most Organelles Cannot Be Constructed De Novo: They Require Information in the Organelle Itself Summany Ucleus And The Colypectide Chain Passes Through an Aqueous Channel in the Translocation Across the ER Membrane Proteins, a Single Internal ER Signal Sequence Remains in the Lipid Bilayer as a Membrane-spanning a Heliator Compilation of Start-Transmembrane Proteins 679 Translocation Across the ER Membrane Proteins in the Lipid Bilayer as a Membrane-spanning a Heliator Compilation of Start-Transmister Optoplogy of Multipass Transmembrane Proteins 679 ER Tail-anchored Proteins Are Integrated into the ER Membrane by a Special Mechanism Translocated Polypeptide Chains Fold and Assemble in the Lumen of the Rough ER Membrane for 18 Signal Sequence and Sorting Receptors Proteins and Developed Translocation Accordance Proteins Are Lumen of the Rough ER Membrane for 20 Signal Sequence an		606		672
Properties Transmitter-Gated Ion Channels Convert Chemical Signals into Electrical Ones at Chemical Synapses Chemical Synapses Can Be Excitatory or Inhibitory The Acetylcholine Receptors at the Neuromuscular Junction Are Excitatory Transmitter-Gated Cation Channels Neurons Contain Many Types of Transmitter-Gated Channels Single Neurons Are Complex Computation Petucins as Single Internal ER Signal Sequence Remains in the Lipid Bilayer as a Membrane- spanning α Helix Combinations of Start-Transfer and Stop-Transfer Signals Determine the Topology of Multipass Transmembrane Proteins, a Single Internal ER Signal Sequence Remains in the Lipid Bilayer as a Membrane- spanning α Helix Combinations of Start-Transfer and Stop-Transfer Signals Determine the Topology of Multipass Transmembrane Proteins Ara Proteiniation (LTP) in the Mammalian Hippocampus Depends on Ca²+ Entry Through NMDA-Receptor Channels Summary Problems References Chapter 12 Intracellular Compartments and Protein Sorting All Eukanyotic Cells Have the Same Basic Set of Membrane- enclosed Organelles Folding Improperty Folded Proteins in the ER Activate an Unfolded Protein Response Gate Summary Folders Assembles Most Lipid Bilayers Gate Glipossylphosphatidylinositol (GPI) Anchor Response Most Organelles Folding Improperty Folded Proteins in the ER Activate an Unfolded Protein Response Gate Glipossylphosphatidylinositol (GPI) Anchor Referen		020		673
Electrical Ones at Chemical Synapses Can Be Excitatory or Inhibitory The Acetylcholine Receptors at the Neuromuscular Junction Are Excitatory Transmitter-Gated Cation Channels Neurons Cordinal Many Typose of Transmitter-Gated Channels Many Psychoactive Drugs Act at Synapses Neuromuscular Transmitter-Gated Channels Many Psychoactive Drugs Act at Synapses Neuromuscular Transmission Involves the Sequential Activation of Five Different Sets of Ion Channels Single Neurons Are Complex Computation Devices Neuronal Computation Requires a Combination of at Least Three Kinds of K* Channels Long-Term Potentiation (LTP) in the Mammalian Hippocampus Depends on Ca²* Entry Through NMDA-Receptor Channels Summary Problems References Chapter 12 Intracellular Compartments and Protein Sorting THE COMPARTMENTALIZATION OF CELLS All Eukaryotic Cells Have the Same Basic Set of Membrane-enclosed Organelles Proteins Can Move Between Compartments in Different Ways Signal Sequence, Remains in the Lipid Bilayer as a Membrane-brane Proteins, a Single Internal ER Signal Sequence Remains in the Lipid Bilayer as a Membrane-brane Proteins of Start-Transfer and Stop-Transfer Signals Determine the Topology of Multipass Transmembrane Proteins of Start-Transfer and Stop-Transfer Signals Determine the Topology of Multipass Transmembrane Proteins of Start-Transfer and Stop-Transfer Signals Determine the Topology of Multipass Transmembrane Proteins of Start-Transfer and Stop-Transfer Signals Determine the Topology of Multipass Transmembrane Proteins Acroacted Polypeptide Chains Fold and Assemble in the Lumen of the Rough ER Most Proteins Synthesized in the Rough ER Most Proteins	Properties	627	· · · · · · · · · · · · · · · · · · ·	0,0
Chemical Synapses Can Be Excitatory or Inhibitory The Acetylcholine Receptors at the Neuromuscular Junction Are Excitatory Transmitter-Gated Channels Neurons Contain Many Types of Cated Vesicles Neurons Contain Many Types of Cated Valency as a Membrane- Singla Sequence Remains in the Lipid Bilayer as a Membrane- Singla Sequence Remains in the Lipid Bilayer as a Membrane- Proteins Are Transfer and Stop-Transfer Signals Determine the Topology of Multipass Transmembrane Proteins Aforther Transfer and Stop-Transfer Signals Determine the Topology of Multipass Transmembrane Proteins Aforther Transfer and Stop-Transfer Signals Determine the Topology of Multipass Transmembrane Proteins Aforther Transfer and Stop-Transfer Signals Determine the Topology of Multipass Transmembrane Proteins Aforther Transfer and Stop-Transfer Signals Determine the Topology of Multipass Transmembrane Proteins Aforther Transfer Signals Determine the Topology of Multipass Transmembrane Proteins Aforther Transfer Signals Determine the Topology of Multipass Transmembrane Proteins Aforther Transfer Signals Determine the Topology of Multipass Transmembrane Proteins Aforther	· · · · · · · · · · · · · · · · · · ·	627		675
The Acetylcholine Receptors at the Neuromuscular Junction Are Excitatory Transmitter-Gated Cation Channels Neurons Contain Many Types of Transmitter-Gated Channels Neuroms Computation Requires a Combination of Start-Transfer and Stop-Transfer Signals Determine the Topology of Multipass Transmembrane Proteins Are Integrated into the ER Membrane by a Special Mechanism Translocated Polypeptide Chains Fold and Assemble in the Lumen of the Rough ER Are Glycosylated by the Addition of a Common N-Linked Oligosaccharide Oligosaccharides Are Used as Tags to Mark the State of Protein Response Nord Proteins Sale Transmembrane Proteins, a Single Internal ER Signal Sequence Strains and Stop-Transfer Signals Determine the Topology of Multipass Transmembrane Proteins Selecit Chains Stop Multipass Transfer Membrane Sales North Folding Are Transfer and S				677
Neurons Contain Many Types of Transmitter-Gated Channels631 Many Psychoactive Drugs Act at Synapses631 Many Psychoactive Drugs Act at Synapses631 Many Psychoactive Drugs Act at Synapses631 		000	In Single-Pass Transmembrane Proteins, a Single Internal ER	0
Many Psychoactive Drugs Act at Synapses Neuromuscular Transmission Involves the Sequential Activation of Five Different Sets of Ion Channels Single Neurons Are Complex Computation Devices Neuronal Computation Requires a Combination of at Least Three Kinds of K* Channels Long-Term Potentiation (LTP) in the Mammalian Hippocampus Depends on Ca ²⁺ Entry Through NMDA-Receptor Channels Summary Problems References Chapter 12 Intracellular Compartments and Protein Sorting HE COMPARTMENTALIZATION OF CELLS All Eukaryotic Cells Have the Same Basic Set of Membrane-enclosed Organelles Relationships of Organelles Proteins Cannot Be Constructed De Novo: They Require Information in the Organelle Itself Summary Note Leas And The CytoSol Response Chapter 13 Intracellular Membrane Traffic The RASSPORT AND THE MAINTENANCE OF COMPARTMENTAL DIFFERS Summary Problems References 631 Combinations of Start-Transfer and Stop-Transfer Signals Determine the Topology of Multipass Transmembrane Proteins 682 RaTail-anachored Proteins Are Integrated into the ER Membrane by a Special Mechanism Translocated Polypeptide Chains Fold and Assemble in the Lumen of the Rough ER Addition of a Common N-Linked Oligosaccharide Response Oligosaccharides Are Used as Tags to Mark the State of Protein Folding Improperly Folded Proteins Are Exported from the ER and Degraded in the Cytosol Misfolded Proteins Are Exported from the ER and Degraded in the Cytosol Misfolded Proteins Are Exported from the ER and Stop-Transfer Signals Determine the Topology of Multipass Transmembrane Proteins 682 Most Proteins Synthesized in the Rough ER are Glycosylated by the Addition of a Common N-Linked Oligosaccharide Response Some Membrane Proteins Are Exported from the ER and Degraded in the Cytosol Misfolded Proteins Are Exported from the ER and Stop-Transfer Signals Relationships of Organelles Search of ER assembles Most Lipid Bilayers References Refere				677
Neuromuscular Iransmission involves the Sequential Activation of Five Different Sets of Ion Channels Single Neurons Are Complex Computation Devices Neuronal Computation Requires a Combination of at Least Three Kinds of K* Channels Long-Term Potentiation (LTP) in the Mammalian Hippocampus Depends on Ca²* Entry Through NMDA-Receptor Channels Summary 1637 Problems References 640 Chapter 12 Intracellular Compartments and Protein Sorting 1748 THE COMPARTMENTALIZATION OF CELLS All Eukaryotic Cells Have the Same Basic Set of Membrane enclosed Organelles Proteins Cannot Be Constructed De Novo: They Require Information in the Organelle Itself Summary 1748 Most Organelles Cannot Be Constructed De Novo: They Require Information in the Organelle Itself NUCLEUS AND THE CYTOSOL Nuclear Pore Complexes Perforate the Nuclear Envelope 649 Determine the Topology of Multipass Transmembrane Proteins Are Integrated into the ER Membrane 5 438 Eali-anchored Proteins Are Integrated into the ER Membrane 5 438 Eali-anchored Proteins Are Integrated into the ER Membrane 5 463 Eali-anchored Proteins Are Integrated into the ER Membrane 5 463 Eali-anchored Proteins Are Integrated into the ER Membrane 5 463 Eali-anchored Proteins Are Integrated into the ER Membrane 5 463 Eali-anchored Proteins Are Integrated into the ER Membrane 5 463 Eali-anchored Proteins Are Integrated into the ER Membrane 5 463 Eali-anchored Proteins Are Integrated into the ER Membrane 5 463 Eali-anchored Proteins Are Integrated into the ER Membrane 5 463 Eali-anchored Proteins Are Integrated into the ER Membrane 5 463 Most Organelles Are Used as Tags to Mark the State of Protein Folding Improperly Folded Proteins Are Exported from the ER and Degraded in the Cytosol Misfolded Proteins Are Exported from the ER and Degraded in the Cytosol Most of the Addition of a Common N-Linked Oligosaccharides Are Used as Tags to Mark the State of Protein Folding Improperly Folded Proteins Activate an Unfolded Protein Response Some Membrane Froteins Acquire a Covalently A	Many Psychoactive Drugs Act at Synapses			0//
Single Neurons Are Complex Computation Devices Neuronal Computation Requires a Combination of at Least Three Kinds of K** Channels Long-Term Potentiation (LTP) in the Mammalian Hippocampus Depends on Ca²* Entry Through NMDA-Receptor Channels Summary Problems References Chapter 12 Intracellular Compartments and Protein Sorting THE COMPARTMENTALIZATION OF CELLS All Eukaryotic Cells Have the Same Basic Set of Membrane-enclosed Organelles Evolutionary Origins May Help Explain the Topological Relationships of Organelles Evolutionary Origins May Help Explain the Topological Response Sorting Receptors Direct Proteins to the Correct Cell Address Most Organelles Cannot Be Constructed De Novo: They Require Information in the Organelle Itself NUCLEUS AND THE CYTOSOL Nuclear Pore Complexes Perforate the Nuclear Envelope 682 **Most Proteins Gal Mechanism Translocated Polypoptide Chains Fold and Assemble in the Lumen of the Rough ER Lumen of the Rough ER 684 **Most Proteins Synthesized in the Rough ER Are Glycosylated by the Addition of a Common N-Linked Oligosaccharide Oligosaccharides Are Used as Tags to Mark the State of Protein Folding Improperly Folded Proteins Are Exported from the ER and Degraded in the Cytosol Misfolded Proteins in the ER Activate an Unfolded Protein Response Some Membrane Proteins Acquire a Covalently Attached Glycosylphosphatidylinositol (GPI) Anchor The ER Assembles Most Lipid Bilayers Segmans Geget Translated Into the Extraction of Assemble in the Lumen of the Rough ER **Most Proteins Synthesized in the Rough ER **Most Proteins Synthesized in the Rough ER **Most Proteins Are User Glycosylated by the Addition of a Common N-Linked Oligosaccharide Oligosaccharide **Most Proteins Synthesized in the Rough ER **Most Proteins Synthesized in the Cultar Membrane Exportein Folding **Most Protein Synthesized in the Cultar Interection of Assembly of a Clathrin Coat Divisor Vesicle Formation **Most Protein Synthesized in the Rough ER **Most Protein Synthesized in the Cultar Interection of Assembl		620	Determine the Topology of Multipass Transmembrane Proteins	679
Neuronal Computation Requires a Combination of at Least Three Kinds of K* Channels Long-Term Potentiation (LTP) in the Mammalian Hippocampus Depends on Ca²+ Entry Through NMDA-Receptor Channels Summary Problems References 637 References 638 References 639 References 639 References 630 Refer			•	600
Lumen of the Rough ER Long-Term Potentiation (LTP) in the Mammalian Hippocampus Depends on Ca ²⁺ Entry Through NMDA-Receptor Channels Summary Problems References Chapter 12 Intracellular Compartments and Protein Sorting HE COMPARTMENTALIZATION OF CELLS All Eukaryotic Cells Have the Same Basic Set of Membrane- enclosed Organelles Evolutionary Origins May Help Explain the Topological Relationships of Organelles Proteins Can Move Between Compartments in Different Ways Signal Sequences and Sorting Receptors Direct Proteins to the Correct Cell Address Most Proteins Synthesized in the Rough ER Addition of a Common N-Linked Oligosaccharide Oligosaccharides Are Used as Tags to Mark the State of Protein Folding Improperly Folded Proteins Are Exported from the ER and Degraded in the Cytosol Misfolded Proteins in the ER Activate an Unfolded Protein Response Some Membrane Proteins Acquire a Covalently Attached Glycosylphosphatidylinositol (GPI) Anchor The ER Assembles Most Lipid Bilayers Summary Problems References 688 649 641 642 643 644 644 645 646 647 648 648 649 649 649 640 640 640 658 640 641 641 641 642 643 644 644 645 646 647 648 649 649 649 640 640 640 640 640	Neuronal Computation Requires a Combination of at Least Three			002
Depends on Ca ²⁺ Entry Through NMDA-Receptor Channels Summary Problems References Chapter 12 Intracellular Compartments and Protein Sorting THE COMPARTMENTALIZATION OF CELLS All Eukaryotic Cells Have the Same Basic Set of Membrane- enclosed Organelles Evolutionary Origins May Help Explain the Topological Relationships of Organelles Proteins Cannot Be Constructed De Novo: They Require Information in the Organelle Itself NUCLEUS AND THE CYTOSOL 638 Midstributes Are Used as Tags to Mark the State of Protein Folding Improperly Folded Proteins Are Exported from the ER and Degraded in the Cytosol Misfolded Proteins in the ER Activate an Unfolded Protein Response Some Membrane Proteins Acquire a Covalently Attached Glycosylphosphatidylinositol (GPI) Anchor The ER Assembles Most Lipid Bilayers 641 Chapter 13 Intracellular Membrane Traffic 645 Chapter 13 Intracellular Membrane Traffic 646 Chapter 13 Intracellular Membrane Traffic 647 THE MOLECULAR MECHANISMS OF MEMBRANE TRANSPORT AND THE MAINTENANCE OF COMPARTMENTAL DIVERSITY 1 There Are Various Types of Coated Vesicles 648 NUCLEUS AND THE CYTOSOL 649 Nuclear Proteins Select Cargo into Clathrin-Coated Vesicles 649 Adaptor Proteins Select Cargo into Clathrin-Coated Vesicles 648		634	Lumen of the Rough ER	682
Summary Problems References Chapter 12 Intracellular Compartments and Protein Sorting THE COMPARTMENTALIZATION OF CELLS All Eukaryotic Cells Have the Same Basic Set of Membrane- enclosed Organelles Evolutionary Origins May Help Explain the Topological Relationships of Organelles Proteins Can Move Between Compartments in Different Ways Signal Sequences and Sorting Receptors Direct Proteins to the Correct Cell Address Most Organelles Cannot Be Constructed De Novo: They Require Information in the Organelle Itself NUCLEUS AND THE CYTOSOL Oligosaccharides Are Used as Tags to Mark the State of Protein Folding Improperly Folded Proteins Are Exported from the ER and Degraded in the Cytosol Misfolded Proteins in the ER Activate an Unfolded Protein Response Some Membrane Proteins Acquire a Covalently Attached Glycosylphosphatidylinositol (GPI) Anchor The ER Assembles Most Lipid Bilayers Summary Problems References 643 References 644 Chapter 13 Intracellular Membrane Traffic 695 THE MOLECULAR MECHANISMS OF MEMBRANE TRANSPORT AND THE MAINTENANCE OF COMPARTMENTAL DIVERSITY There Are Various Types of Coated Vesicles The Assembly of a Clathrin Coated Vesicles Folding Improperly Folded Proteins Are Exported from the ER and Degraded in the Cytosol Misfolded Proteins in the ER Activate an Unfolded Protein Response Some Membrane Proteins Acquire a Covalently Attached Glycosylphosphatidylinositol (GPI) Anchor The ER Assembles Most Lipid Bilayers Summary Foblems Response Some Membrane Proteins Acquire a Covalently Attached Glycosylphosphatidylinositol (GPI) Anchor The ER Assembles Most Lipid Bilayers Summary Foblems Response Some Membrane Proteins Acquire a Covalently Attached Glycosylphosphatidylinositol (GPI) Anchor The ER Assembles Most Lipid Bilayers Summary Foblems Response Some Membrane Proteins Acquire a Covalently Attached Glycosylphosphatidylinositol (GPI) Anchor The ER Assembles Most Lipid Bilayers Summary Foblems Response Some Membrane Proteins Acquire a Covalently Attached Glycosylphosphatidylinositol (GPI) Anc		636		683
References 640 Chapter 12 Intracellular Compartments and Protein Sorting 641 Chapter 12 Intracellular Compartments and Protein Sorting 642 THE COMPARTMENTALIZATION OF CELLS All Eukaryotic Cells Have the Same Basic Set of Membrane-enclosed Organelles Evolutionary Origins May Help Explain the Topological Relationships of Organelles Proteins Can Move Between Compartments in Different Ways Signal Sequences and Sorting Receptors Direct Proteins to the Correct Cell Address Most Organelles Cannot Be Constructed De Novo: They Require Information in the Organelle Itself Summary Most Ordander Froteins Are Exported from the ER and Degraded in the Cytosol Misfolded Proteins in the ER Activate an Unfolded Protein Response Some Membrane Proteins Acquire a Covalently Attached Glycosylphosphatidylinositol (GPI) Anchor The ER Assembles Most Lipid Bilayers 643 References 644 Summary Problems References 645 Chapter 13 Intracellular Membrane Traffic 646 Chapter 13 Intracellular Membrane Traffic 647 THE MOLECULAR MECHANISMS OF MEMBRANE TRANSPORT AND THE MAINTENANCE OF COMPARTMENTAL DIVERSITY There Are Various Types of Coated Vesicles 647 There Are Various Types of Coated Vesicles 648 The Assembly of a Clathrin Coat Drives Vesicle Formation 649 Adaptor Proteins Select Cargo into Clathrin-Coated Vesicles 649				000
Chapter 12 Intracellular Compartments and Protein Sorting 641 Response Some Membrane Proteins Acquire a Covalently Attached Glycosylphosphatidylinositol (GPI) Anchor The ER Assembles Most Lipid Bilayers enclosed Organelles Forteins Can Move Between Compartments in Different Ways Signal Sequences and Sorting Receptors Direct Proteins to the Correct Cell Address Most Organelles Cannot Be Constructed De Novo: They Require Information in the Organelle Itself Nummary The TRANSPORT OF MOLECULES BETWEEN THE NUCLEUS AND THE CYTOSOL Response Some Membrane Proteins Acquire a Covalently Attached Glycosylphosphatidylinositol (GPI) Anchor Response Some Membrane Proteins Acquire a Covalently Attached Glycosylphosphatidylinositol (GPI) Anchor The ER Assembles Most Lipid Bilayers Summary Problems References 641 Chapter 13 Intracellular Membrane Traffic THE MOLECULAR MECHANISMS OF MEMBRANE TRANSPORT AND THE MAINTENANCE OF COMPARTMENTAL DIVERSITY There Are Various Types of Coated Vesicles The Assembly of a Clathrin Coat Drives Vesicle Formation Froteins Are Exported from the ER and Degraded in the Cytosol Response Some Membrane Proteins Acquire a Covalently Attached Glycosylphosphatidylinositol (GPI) Anchor The ER Assembles Most Lipid Bilayers Froblems References Chapter 13 Intracellular Membrane Traffic THE MOLECULAR MECHANISMS OF MEMBRANE TRANSPORT AND THE MAINTENANCE OF COMPARTMENTAL DIVERSITY There Are Various Types of Coated Vesicles The Assembly of a Clathrin Coat Drives Vesicle Formation Froteins Are Exported in the Cytosol			§ .	685
Chapter 12 Intracellular Compartments and Protein Sorting 641 THE COMPARTMENTALIZATION OF CELLS All Eukaryotic Cells Have the Same Basic Set of Membrane- enclosed Organelles Evolutionary Origins May Help Explain the Topological Relationships of Organelles Proteins Can Move Between Compartments in Different Ways Signal Sequences and Sorting Receptors Direct Proteins to the Correct Cell Address Most Organelles Cannot Be Constructed De Novo: They Require Information in the Organelle Itself Summary THE TRANSPORT OF MOLECULES BETWEEN THE NUCLEUS AND THE CYTOSOL Misfolded Proteins in the ER Activate an Unfolded Protein Response Some Membrane Proteins Acquire a Covalently Attached Glycosylphosphatidylinositol (GPI) Anchor The ER Assembles Most Lipid Bilayers Summary Problems References 641 Chapter 13 Intracellular Membrane Traffic FIRANSPORT AND THE MAINTENANCE OF COMPARTMENTAL DIVERSITY There Are Various Types of Coated Vesicles Formation FRESPONSE Some Membrane Proteins in the ER Activate an Unfolded Protein Response Some Membrane Proteins Acquire a Covalently Attached Glycosylphosphatidylinositol (GPI) Anchor The ER Assembles Most Lipid Bilayers Summary Froblems References 643 References Chapter 13 Intracellular Membrane Traffic FIRANSPORT AND THE MAINTENANCE OF COMPARTMENTAL DIVERSITY There Are Various Types of Coated Vesicles Formation FRESPONSE FOWNIES AND THE CYTOSOL FORMATION OF CELLS FOR AND THE CYTOSOL FORMATION OF CELLS FOR AND THE COVALED AND THE CYTOSOL FOR AND THE C				685
Some Membrane Proteins Acquire a Covalently Attached Glycosylphosphatidylinositol (GPI) Anchor The ER Assembles Most Lipid Bilayers 688 689 enclosed Organelles Evolutionary Origins May Help Explain the Topological Relationships of Organelles Froteins Can Move Between Compartments in Different Ways Signal Sequences and Sorting Receptors Direct Proteins to the Correct Cell Address Most Organelles Cannot Be Constructed De Novo: They Require Information in the Organelle Itself Summary THE TRANSPORT OF MOLECULES BETWEEN THE NUCLEUS AND THE CYTOSOL 649 Nuclear Pore Complexes Perforate the Nuclear Envelope 641 Glycosylphosphatidylinositol (GPI) Anchor The ER Assembles Most Lipid Bilayers 649 Summary 691 References 643 References 644 Chapter 13 Intracellular Membrane Traffic 695 THE MOLECULAR MECHANISMS OF MEMBRANE TRANSPORT AND THE MAINTENANCE OF COMPARTMENTAL DIVERSITY 697 There Are Various Types of Coated Vesicles 698 Adaptor Proteins Select Cargo into Clathrin-Coated Vesicles 698	Chapter 12 Intracellular Compartments and			000
THE COMPARTMENTALIZATION OF CELLS All Eukaryotic Cells Have the Same Basic Set of Membrane- enclosed Organelles Evolutionary Origins May Help Explain the Topological Relationships of Organelles Proteins Can Move Between Compartments in Different Ways Signal Sequences and Sorting Receptors Direct Proteins to the Correct Cell Address Most Organelles Cannot Be Constructed De Novo: They Require Information in the Organelle Itself Summary THE TRANSPORT OF MOLECULES BETWEEN THE NUCLEUS AND THE CYTOSOL 641 Glycosylphosphatidylinositol (GPI) Anchor The ER Assembles Most Lipid Bilayers Summary Problems References 642 Chapter 13 Intracellular Membrane Traffic 645 THE MOLECULAR MECHANISMS OF MEMBRANE TRANSPORT AND THE MAINTENANCE OF COMPARTMENTAL DIVERSITY 697 There Are Various Types of Coated Vesicles 698 The Assembly of a Clathrin Coat Drives Vesicle Formation 697 Adaptor Proteins Select Cargo into Clathrin-Coated Vesicles 698 The Rassembles Most Lipid Bilayers 689 Summary 691 The ER Assembles Most Lipid Bilayers 689 Chapter 13 Intracellular Membrane Traffic 695 THE MOLECULAR MECHANISMS OF MEMBRANE TRANSPORT AND THE MAINTENANCE OF COMPARTMENTAL DIVERSITY 697 There Are Various Types of Coated Vesicles 698 The Assembly of a Clathrin Coat Drives Vesicle Formation 697 Adaptor Proteins Select Cargo into Clathrin-Coated Vesicles 698	Protein Sorting	641		686
All Eukaryotic Cells Have the Same Basic Set of Membrane- enclosed Organelles Evolutionary Origins May Help Explain the Topological Relationships of Organelles Proteins Can Move Between Compartments in Different Ways Signal Sequences and Sorting Receptors Direct Proteins to the Correct Cell Address Most Organelles Cannot Be Constructed De Novo: They Require Information in the Organelle Itself Summary THE TRANSPORT OF MOLECULES BETWEEN THE NUCLEUS AND THE CYTOSOL All Eukaryotic Cells Have the Same Basic Set of Membrane- 641 Summary Problems References Chapter 13 Intracellular Membrane Traffic 645 THE MOLECULAR MECHANISMS OF MEMBRANE TRANSPORT AND THE MAINTENANCE OF COMPARTMENTAL DIVERSITY 697 There Are Various Types of Coated Vesicles 697 The Assembly of a Clathrin Coat Drives Vesicle Formation 697 Adaptor Proteins Select Cargo into Clathrin-Coated Vesicles 698	THE COMPARTMENTALIZATION OF CELLS	641	· · · · · · · · · · · · · · · · · · ·	688
Evolutionary Origins May Help Explain the Topological Relationships of Organelles Proteins Can Move Between Compartments in Different Ways Signal Sequences and Sorting Receptors Direct Proteins to the Correct Cell Address Most Organelles Cannot Be Constructed De Novo: They Require Information in the Organelle Itself Summary THE TRANSPORT OF MOLECULES BETWEEN THE NUCLEUS AND THE CYTOSOL Keferences 643 References Chapter 13 Intracellular Membrane Traffic 645 THE MOLECULAR MECHANISMS OF MEMBRANE TRANSPORT AND THE MAINTENANCE OF COMPARTMENTAL DIVERSITY There Are Various Types of Coated Vesicles 697 The Assembly of a Clathrin Coat Drives Vesicle Formation 698 Adaptor Proteins Select Cargo into Clathrin-Coated Vesicles 698		0.44		689
Relationships of Organelles Proteins Can Move Between Compartments in Different Ways Signal Sequences and Sorting Receptors Direct Proteins to the Correct Cell Address Most Organelles Cannot Be Constructed De Novo: They Require Information in the Organelle Itself Summary THE TRANSPORT OF MOLECULES BETWEEN THE NUCLEUS AND THE CYTOSOL Nuclear Pore Complexes Perforate the Nuclear Envelope References 694 References 695 Chapter 13 Intracellular Membrane Traffic 695 THE MOLECULAR MECHANISMS OF MEMBRANE TRANSPORT AND THE MAINTENANCE OF COMPARTMENTAL DIVERSITY 697 There Are Various Types of Coated Vesicles 698 Adaptor Proteins Select Cargo into Clathrin-Coated Vesicles 698	•	641		
Signal Sequences and Sorting Receptors Direct Proteins to the Correct Cell Address Most Organelles Cannot Be Constructed De Novo: They Require Information in the Organelle Itself Summary THE TRANSPORT OF MOLECULES BETWEEN THE NUCLEUS AND THE CYTOSOL Nuclear Pore Complexes Perforate the Nuclear Envelope Adaptor Proteins to the Chapter 13 Intracellular Membrane Traffic 695 THE MOLECULAR MECHANISMS OF MEMBRANE TRANSPORT AND THE MAINTENANCE OF COMPARTMENTAL DIVERSITY There Are Various Types of Coated Vesicles 697 Adaptor Proteins Select Cargo into Clathrin-Coated Vesicles 698	Relationships of Organelles			
Correct Cell Address Most Organelles Cannot Be Constructed De Novo: They Require Information in the Organelle Itself Summary THE TRANSPORT OF MOLECULES BETWEEN THE NUCLEUS AND THE CYTOSOL Nuclear Pore Complexes Perforate the Nuclear Envelope 647 Chapter 13 Intracellular Membrane Traffic 648 THANSPORT AND THE MAINTENANCE OF COMPARTMENTAL DIVERSITY 697 There Are Various Types of Coated Vesicles 698 Adaptor Proteins Select Cargo into Clathrin-Coated Vesicles 698		645		
Most Organelles Cannot Be Constructed De Novo: They Require Information in the Organelle Itself Summary THE MOLECULAR MECHANISMS OF MEMBRANE TRANSPORT AND THE MAINTENANCE OF COMPARTMENTAL DIVERSITY 697 THE TRANSPORT OF MOLECULES BETWEEN THE NUCLEUS AND THE CYTOSOL 649 Nuclear Pore Complexes Perforate the Nuclear Envelope 649 The Assembly of a Clathrin Coat Drives Vesicle Formation 697 Adaptor Proteins Select Cargo into Clathrin-Coated Vesicles 698		647	Chapter 13 Intracellular Membrane Traffic	695
Summary 649 COMPARTMENTAL DIVERSITY 697 THE TRANSPORT OF MOLECULES BETWEEN THE NUCLEUS AND THE CYTOSOL 649 The Assembly of a Clathrin Coat Drives Vesicle Formation 697 Nuclear Pore Complexes Perforate the Nuclear Envelope 649 Adaptor Proteins Select Cargo into Clathrin-Coated Vesicles 698		0.46	THE MOLECULAR MECHANISMS OF MEMBRANE	
THE TRANSPORT OF MOLECULES BETWEEN THE NUCLEUS AND THE CYTOSOL Nuclear Pore Complexes Perforate the Nuclear Envelope N				00-
NUCLEUS AND THE CYTOSOL 649 The Assembly of a Clathrin Coat Drives Vesicle Formation 697 Nuclear Pore Complexes Perforate the Nuclear Envelope 649 Adaptor Proteins Select Cargo into Clathrin-Coated Vesicles 698		0 10		
	NUCLEUS AND THE CYTOSOL		The Assembly of a Clathrin Coat Drives Vesicle Formation	697

Membrane-Bending Proteins Help Deform the Membrane During	704	Secretory Vesicle Membrane Components Are Quickly Removed	7.40
Vesicle Formation Cytoplasmic Proteins Regulate the Pinching-Off and Uncoating	701	from the Plasma Membrane Some Regulated Exocytosis Events Serve to Enlarge the Plasma	746
of Coated Vesicles	701	Membrane	748
Monomeric GTPases Control Coat Assembly	703	Polarized Cells Direct Proteins from the <i>Trans</i> Golgi Network	7 40
Not All Transport Vesicles Are Spherical	704	to the Appropriate Domain of the Plasma Membrane	748
Rab Proteins Guide Transport Vesicles to Their Target Membrane	705	Summary	750
Rab Cascades Can Change the Identity of an Organelle	707	Problems	750
SNAREs Mediate Membrane Fusion	708	References	752
Interacting SNAREs Need to Be Pried Apart Before They Can	700		
Function Again Summary	709 710	Chapter 14 Energy Conversion: Mitochondria	
	710	and Chloroplasts	753
TRANSPORT FROM THE ER THROUGH THE GOLGI APPARATUS	710	THE MITOCHONDRION	755
Proteins Leave the ER in COPII-Coated Transport Vesicles	710	The Mitochondrion Has an Outer Membrane and an Inner	133
Only Proteins That Are Properly Folded and Assembled Can		Membrane	757
Leave the ER	712	The Inner Membrane Cristae Contain the Machinery for Electron	
Vesicular Tubular Clusters Mediate Transport from the ER to		Transport and ATP Synthesis	758
the Golgi Apparatus	712	The Citric Acid Cycle in the Matrix Produces NADH	758
The Retrieval Pathway to the ER Uses Sorting Signals	713	Mitochondria Have Many Essential Roles in Cellular Metabolism	759
Many Proteins Are Selectively Retained in the Compartments in Which They Function	714	A Chemiosmotic Process Couples Oxidation Energy to ATP Production	761
The Golgi Apparatus Consists of an Ordered Series of	7 14	The Energy Derived from Oxidation Is Stored as an	701
Compartments	715	Electrochemical Gradient	762
Oligosaccharide Chains Are Processed in the Golgi Apparatus	716	Summary	763
Proteoglycans Are Assembled in the Golgi Apparatus	718	THE PROTON PUMPS OF THE ELECTRON-TRANSPORT	
What Is the Purpose of Glycosylation?	719	CHAIN	763
Transport Through the Golgi Apparatus May Occur by	700	The Redox Potential Is a Measure of Electron Affinities	763
Cisternal Maturation Golgi Matrix Proteins Help Organize the Stack	720 721	Electron Transfers Release Large Amounts of Energy	764
Summary	722	Transition Metal Ions and Quinones Accept and Release	704
TRANSPORT FROM THE TRANS GOLGI NETWORK TO	,	Electrons Readily NADH Transfers Its Electrons to Oxygen Through Three	764
LYSOSOMES	722	Large Enzyme Complexes Embedded in the Inner	
Lysosomes Are the Principal Sites of Intracellular Digestion	722	Membrane	766
Lysosomes Are Heterogeneous	723	The NADH Dehydrogenase Complex Contains Separate	
Plant and Fungal Vacuoles Are Remarkably Versatile Lysosomes	724	Modules for Electron Transport and Proton Pumping	768
Multiple Pathways Deliver Materials to Lysosomes	725	Cytochrome c Reductase Takes Up and Releases Protons on	
Autophagy Degrades Unwanted Proteins and Organelles	726	the Opposite Side of the Crista Membrane, Thereby	700
A Mannose 6-Phosphate Receptor Sorts Lysosomal Hydrolases	727	Pumping Protons The Outgetrame a Ovidese Complex Pumpe Protons and	768
in the <i>Trans</i> Golgi Network Defects in the GlcNAc Phosphotransferase Cause a Lysosomal	121	The Cytochrome c Oxidase Complex Pumps Protons and Reduces O ₂ Using a Catalytic Iron–Copper Center	770
Storage Disease in Humans	728	The Respiratory Chain Forms a Supercomplex in the Crista	110
Some Lysosomes and Multivesicular Bodies Undergo		Membrane	772
Exocytosis	729	Protons Can Move Rapidly Through Proteins Along Predefined	
Summary	729	Pathways	773
TRANSPORT INTO THE CELL FROM THE PLASMA		Summary	774
MEMBRANE: ENDOCYTOSIS	730	ATP PRODUCTION IN MITOCHONDRIA	774
Pinocytic Vesicles Form from Coated Pits in the Plasma	701	The Large Negative Value of ΔG for ATP Hydrolysis Makes	774
Membrane Not All Pinocytic Vesicles Are Clathrin-Coated	731 731	ATP Useful to the Cell The ATP Synthase Is a Nanomachine that Produces ATP by	774
Cells Use Receptor-Mediated Endocytosis to Import Selected	731	Rotary Catalysis	776
Extracellular Macromolecules	732	Proton-driven Turbines Are of Ancient Origin	777
Specific Proteins Are Retrieved from Early Endosomes and		Mitochondrial Cristae Help to Make ATP Synthesis Efficient	778
Returned to the Plasma Membrane	734	Special Transport Proteins Exchange ATP and ADP Through	
Plasma Membrane Signaling Receptors are Down-Regulated		the Inner Membrane	779
by Degradation in Lysosomes	735	Chemiosmotic Mechanisms First Arose in Bacteria	780
Early Endosomes Mature into Late Endosomes ESCRT Protein Complexes Mediate the Formation of	735	Summary	782
Intralumenal Vesicles in Multivesicular Bodies	736	CHLOROPLASTS AND PHOTOSYNTHESIS	782
Recycling Endosomes Regulate Plasma Membrane Composition	737	Chloroplasts Resemble Mitochondria But Have a Separate	700
Specialized Phagocytic Cells Can Ingest Large Particles	738	Thylakoid Compartment Chloroplasts Capture Energy from Sunlight and Use It to Fix	782
Summary	740	Carbon	783
TRANSPORT FROM THE TRANS GOLGI NETWORK TO		Carbon Fixation Uses ATP and NADPH to Convert CO ₂ into	
THE CELL EXTERIOR: EXOCYTOSIS	741	Sugars	784
Many Proteins and Lipids Are Carried Automatically from the	·	Sugars Generated by Carbon Fixation Can Be Stored as	705
Trans Golgi Network (TGN) to the Cell Surface	741	Starch or Consumed to Produce ATP The Thydoloid Membranes of Chloroplasta Contain the Protein	785
Secretory Vesicles Bud from the <i>Trans</i> Golgi Network Precursors of Secretory Proteins Are Proteolytically Processed	742	The Thylakoid Membranes of Chloroplasts Contain the Protein Complexes Required for Photosynthesis and ATP Generation	786
During the Formation of Secretory Vesicles	743	Chlorophyll–Protein Complexes Can Transfer Either Excitation	, 00
Secretory Vesicles Wait Near the Plasma Membrane Until	-	Energy or Electrons	787
Signaled to Release Their Contents	744	A Photosystem Consists of an Antenna Complex and a Reaction	
For Rapid Exocytosis, Synaptic Vesicles Are Primed at the	7.4.4	Center	788
Presynaptic Plasma Membrane Synaptic Vericles Can Form Directly from Endocytic Vericles	744 746	The Thylakoid Membrane Contains Two Different Photosystems	700
Synaptic Vesicles Can Form Directly from Endocytic Vesicles	746	Working in Series	789

DETAILED CONTENTS xxix

Photosystem II Uses a Manganese Cluster to Withdraw	700	Some G Proteins Signal Via Phospholipids	836
Electrons From Water The Outcoherman har Complex Connects Photocyctem II to	790	Ca ²⁺ Functions as a Ubiquitous Intracellular Mediator	838
The Cytochrome <i>b</i> ₆ - <i>f</i> Complex Connects Photosystem II to Photosystem I	791	Feedback Generates Ca ²⁺ Waves and Oscillations Ca ²⁺ /Calmodulin-Dependent Protein Kinases Mediate	838
Photosystem I Carries Out the Second Charge-Separation	131	Many Responses to Ca ²⁺ Signals	840
Step in the Z Scheme	792	Some G Proteins Directly Regulate Ion Channels	843
The Chloroplast ATP Synthase Uses the Proton Gradient		Smell and Vision Depend on GPCRs That Regulate Ion Channels	843
Generated by the Photosynthetic Light Reactions to		Nitric Oxide Is a Gaseous Signaling Mediator That Passes	
Produce ATP	793	Between Cells	846
All Photosynthetic Reaction Centers Have Evolved From	700	Second Messengers and Enzymatic Cascades Amplify Signals	848
a Common Ancestor The Proton-Motive Force for ATP Production in Mitochondria	793	GPCR Desensitization Depends on Receptor Phosphorylation Summary	848 849
and Chloroplasts Is Essentially the Same	794		
Chemiosmotic Mechanisms Evolved in Stages	794	SIGNALING THROUGH ENZYME-COUPLED RECEPTORS Activated Receptor Tyrosine Kinases (RTKs) Phosphorylate	850
By Providing an Inexhaustible Source of Reducing Power,		Themselves	850
Photosynthetic Bacteria Overcame a Major Evolutionary		Phosphorylated Tyrosines on RTKs Serve as Docking Sites for	000
Obstacle	796	Intracellular Signaling Proteins	852
The Photosynthetic Electron-Transport Chains of Cyanobacteria		Proteins with SH2 Domains Bind to Phosphorylated Tyrosines	852
Produced Atmospheric Oxygen and Permitted New Life-Forms	796	The GTPase Ras Mediates Signaling by Most RTKs	854
Summary	798	Ras Activates a MAP Kinase Signaling Module	855
THE GENETIC SYSTEMS OF MITOCHONDRIA AND		Scaffold Proteins Help Prevent Cross-talk Between Parallel MAP Kinase Modules	857
CHLOROPLASTS	800	Rho Family GTPases Functionally Couple Cell-Surface Receptors	001
The Genetic Systems of Mitochondria and Chloroplasts Resemble	000	to the Cytoskeleton	858
Those of Prokaryotes	800	PI 3-Kinase Produces Lipid Docking Sites in the Plasma	
Over Time, Mitochondria and Chloroplasts Have Exported Most		Membrane	859
of Their Genes to the Nucleus by Gene Transfer	801	The PI-3-Kinase–Akt Signaling Pathway Stimulates Animal	
The Fission and Fusion of Mitochondria Are Topologically	000	Cells to Survive and Grow	860
Complex Processes Animal Mitochondria Contain the Simplest Genetic Systems	802	RTKs and GPCRs Activate Overlapping Signaling Pathways Some Enzyme-Coupled Receptors Associate with Cytoplasmic	861
Known	803	Tyrosine Kinases	862
Mitochondria Have a Relaxed Codon Usage and Can Have a	000	Cytokine Receptors Activate the JAK-STAT Signaling Pathway	863
Variant Genetic Code	804	Protein Tyrosine Phosphatases Reverse Tyrosine Phosphorylations	
Chloroplasts and Bacteria Share Many Striking Similarities	806	Signal Proteins of the TGF β Superfamily Act Through Receptor	
Organelle Genes Are Maternally Inherited in Animals and Plants	807	Serine/Threonine Kinases and Smads	865
Mutations in Mitochondrial DNA Can Cause Severe Inherited	007	Summary	866
Diseases The Accumulation of Mitochondrial DNA Mutations Is a	807	ALTERNATIVE SIGNALING ROUTES IN GENE REGULATION	867
Contributor to Aging	808	The Receptor Notch Is a Latent Transcription Regulatory Protein	867
Why Do Mitochondria and Chloroplasts Maintain a Costly	000	Wnt Proteins Bind to Frizzled Receptors and Inhibit the	868
Separate System for DNA Transcription and Translation?	808	Degradation of β-Catenin Hedgehog Proteins Bind to Patched, Relieving Its Inhibition of	000
Summary	809	Smoothened	871
Problems	809	Many Stressful and Inflammatory Stimuli Act Through an	
References	811	NFκB-Dependent Signaling Pathway	873
		Nuclear Receptors Are Ligand-Modulated Transcription	
Chapter 15 Cell Signaling	813	Regulators	874
PRINCIPLES OF CELL SIGNALING	813	Circadian Clocks Contain Negative Feedback Loops That Control Gene Expression	876
Extracellular Signals Can Act Over Short or Long Distances	814	Three Proteins in a Test Tube Can Reconstitute a Cyanobacterial	0/0
Extracellular Signal Molecules Bind to Specific Receptors	815	Circadian Clock	878
Each Cell Is Programmed to Respond to Specific Combinations		Summary	879
of Extracellular Signals	816	SIGNALING IN PLANTS	880
There Are Three Major Classes of Cell-Surface Receptor Proteins	818	Multicellularity and Cell Communication Evolved Independently	
Cell-Surface Receptors Relay Signals Via Intracellular Signaling	010	in Plants and Animals	880
Molecules Intracellular Signals Must Be Specific and Precise in a Noisy	819	Receptor Serine/Threonine Kinases Are the Largest Class of	
Cytoplasm	820	Cell-Surface Receptors in Plants	881
Intracellular Signaling Complexes Form at Activated Receptors	822	Ethylene Blocks the Degradation of Specific Transcription Regulatory Proteins in the Nucleus	881
Modular Interaction Domains Mediate Interactions Between		Regulated Positioning of Auxin Transporters Patterns Plant	001
Intracellular Signaling Proteins	822	Growth	882
The Relationship Between Signal and Response Varies in Different		Phytochromes Detect Red Light, and Cryptochromes Detect	
Signaling Pathways	824	Blue Light	883
The Speed of a Response Depends on the Turnover of Signaling	905	Summary	885
Molecules Cells Can Respond Abruptly to a Gradually Increasing Signal	825 827	Problems	886
Positive Feedback Can Generate an All-or-None Response	828	References	887
Negative Feedback is a Common Motif in Signaling Systems	829	Observed O. The Outselvel State	000
Cells Can Adjust Their Sensitivity to a Signal	830	Chapter 16 The Cytoskeleton	889
Summary	831	FUNCTION AND ORIGIN OF THE CYTOSKELETON	889
SIGNALING THROUGH G-PROTEIN-COUPLED RECEPTORS	832	Cytoskeletal Filaments Adapt to Form Dynamic or Stable	
Trimeric G Proteins Relay Signals From GPCRs	832	Structures	890
Some G Proteins Regulate the Production of Cyclic AMP	833	The Cytoskeleton Determines Cellular Organization and Polarity	892
Cyclic-AMP-Dependent Protein Kinase (PKA) Mediates Most		Filaments Assemble from Protein Subunits That Impart Specific	
of the Effects of Cyclic AMP	834	Physical and Dynamic Properties	893